
- •Основи теорії автоматичного управління
- •Частина 1. Лінійні системи
- •1. Загальна характеристика об'єктів і систем автоматичного керування
- •1.1 Короткі історичні відомості
- •1.2 Основні поняття і визначення
- •1.3 Принципи регулювання
- •1.4 Приклади систем автоматичного регулювання в хімічній технології
- •1.5 Класифікація систем автоматичного керування
- •1.6 Тренувальні завдання
- •1.7 Тести
- •2 Регулярні сигнали і їх характеристики
- •2.1 Визначення регулярного сигналу
- •2.2 Основні типи регулярних сигналів. Періодичні і безперервні сигнали
- •Перетворення Фурье, його основні властивості
- •Спектри сигналів
- •2.5 Розподіл енергії в спектрах сигналів
- •Практична ширина спектру і спотворення сигналів
- •2.7 Представлення сигналів
- •2.8 Сигнали. Їх види
- •2.9 Тренувальні завдання
- •2.10 Тести
- •3.Математичний опис автоматичних систем
- •3.1 Основні способи математичного опису. Рівняння руху.
- •3.2 Приклади рівнянь об'єктів керування
- •3.2.1 Гідравлічний резервуар
- •3.2.2 Електрична ємкість
- •3.2.3 Хімічний реактор повного перемішування
- •3.3 Визначення лінійної стаціонарної системи. Принцип суперпозиції
- •3.4 Динамічне поводження лінійних систем
- •3.5 Динамічні процеси в системах
- •3.6 Перехідна і вагова функції
- •3.6.1 Перехідна функція
- •3.6.2 Вагова функція
- •3.7 Інтеграл Дюамеля
- •Перетворення Лапласа
- •Визначення перетворення Лапласа
- •Властивості перетворення Лапласа
- •Рішення диференціальних рівнянь
- •Розбиття на прості дроби
- •Передаточна функція
- •3.10 Тренувальні завдання
- •3.11 Тести
- •4 Частотний метод дослідження лінійних систем
- •4.1 Елементи теорії функції комплексного змінного
- •4.2 Частотні характеристики
- •4.3 Зв'язок перетворень Лапласа і Фур’є
- •4.4 Зв'язок диференціального рівняння з частотними характеристиками
- •4.5 Фізичний сенс частотних характеристик
- •4.6 Мінімально-фазові системи
- •4.7 Поняття про логарифмічні частотні характеристики
- •4.8 Взаємозв'язок динамічних характеристик
- •4.9 Тренувальні завдання
- •4.10 Тести
- •5 Структурний аналіз лінійних систем
- •5.1 Ланка направленої дії
- •5.2 Типові динамічні ланки
- •5.2.1 Підсилювальна ланка
- •5.2.2 Інтегруюча ланка
- •5.2.6 Ланка чистого запізнювання
- •5.2.7 Аперіодична ланка першого порядку
- •5.2.8Ланка щоінерційно-форсуює
- •5.2.9 Аперіодична ланка другого порядку
- •5.2.10 Коливальна ланка
- •5.2.11 Особливі ланки
- •5.3 Основні способи з'єднання ланок
- •5.3.1 Структурні схеми
- •5.3.2 Паралельне з'єднання ланок
- •5.3.3 Послідовне з'єднання ланок
- •5.3.4 З'єднання із зворотним зв'язком
- •5.3.5 Передаточні функції замкнутої системи
- •5.3.6 Правила перетворення структурних схем
- •5.3.7 Формула мейсона
- •5.4 Типові закони регулювання
- •5.4.1 Пропорційний закон регулювання
- •5.4.2 Інтегральний закон регулювання
- •5.4.3 Диференційний закон регулювання
- •5.4.4 Пропорційно-диференційний закон регулювання
- •5.4.5 Пропорційно-інтегральний закон регулювання
- •5.4.6 Пропорційно-інтегрально-диференційний закон регулювання
- •5.5 Тренувальні завдання
- •5.6 Тести
- •6 Стійкість лінійних систем
- •6.1 Поняття стійкості і її визначення
- •6.2 Стійкість лінійного диференціального рівняння з постійнимикоефіцієнтами
- •6.3 Зображення руху у фазовому просторі
- •6.3.1 Поняття фазового простору
- •6.3.2 Фазові портрети лінійних систем другого порядку
- •6.4 Поняття стійкості руху
- •6.5 Основні види стійкості
- •6.5.1 Орбітальна стійкість
- •6.5.2 Стійкість по ляпунову
- •6.5.3 Асимптотична стійкість
- •6.6 Необхідна умова стійкості
- •6.7 Алгебраїчні критерії стійкості
- •6.7.1 Критерій стійкості рауса
- •6.7.2 Критерій стійкості гурвіця
- •6.7.3 Критерій стійкості л’єнара-шипаро
- •6.7.4 Стійкість і стала похибка
- •6.7.5 Область стійкості
- •6.8 Частотні критерії стійкості
- •6.8.1 Принцип аргументу
- •6.8.2 Критерій міхайлова
- •6.8.3 Критерій найквіста
- •6.8.4 Застосування критеріїв для дослідження стійкості систем
- •6.8.5 Аналіз стійкості по логарифмічних частотних характеристиках
- •6.9Тренувальні завдання
- •6.10 Тести
- •7. Синтез стійких систем з необхідним запасом стійкості
- •7.1 Стійкість ланок і систем. Запас стійкості.
- •7.2 Межі стійкості систем
- •7.2.1 Межа стійкості для систем з пі-регулятором
- •7.2.2 Межа стійкості для систем з пі-регулятором
- •7.2.3 Межі стійкості для системи з і-регулятором
- •7.3 Запас стійкості і його оцінка
- •7.3.1 Кореневі методи оцінки запасу стійкості
- •7.3.2 Частотні методи оцінки запасу стійкості
- •7.4 Розширені частотні характеристики
- •7.5 Аналіз систем на запас стійкості
- •7.6 Синтез систем з необхідним запасом стійкості
- •Система с п-регулятором
- •7.6.2 Система с і-регулятором
- •7.6.3 Система с пі-регулятором
- •7.6.4 Система з пд-регулятором
- •7.7 Використання логарифмічних частотних характеристик для забезпечення стійкості і заданого запасу стійкості
- •7.8 Структурно-стійкі системи
- •7.9 Малі параметри систем і їх вплив на стійкість
- •7.10 Використання корегуючих пристроїв для забезпечення стійкості і запасу стійкості
- •7.10.1 Послідовна корекція
- •7.10.2 Паралельна корекція
- •7.11 Тренувальні завдання
- •7.12 Тести
- •8.Якість процесів регулювання і методи її аналіза
- •8.1 Показники якості регулювання
- •8.1.1 Прямі показники якості регулювання
- •8.1.2 Непрямі показники якості регулювання
- •8.1.3 Інтегральні критерії якості регулювання
- •8.1.3.1 Лінійний інтегральний критерій
- •8.1.3.2 Модульний інтегральний критерій
- •Інтегральний квадратичний критерій
- •8.2 Частотні методи аналізу якості регулювання
- •8.2.1 Залежність між перехідною і частотними характеристиками
- •8.2.2 Властивості дійсно-частотних характеристик і відповідних їмперехідних процесів
- •8.3 Поняття про чутливість систем автоматичного регулювання
- •Тренувальні завдання
- •8.5 Тести
- •9 Методи розрахунку настроювальних параметрів для сар
- •9.1 Постановка задачі
- •9.2 Вибір оптимальних настройок регуляторів методом незгасаючих коливань
- •9.3 Алгоритм розрахунку області настройок типових регуляторів
- •9.4 Графоаналітичний метод розрахунку
- •9.5 Тренувальні завдання
- •9.6 Тести
- •Частина 2 нелінійні системи
- •10 Методи лінеаризації характеристик нелінійних систем
- •10.1 Особливості нелінійних систем
- •10.2 Типові нелінійні елементи систем керування
- •10.3 Методи лінеаризації
- •10.3.1 Розкладання в ряд Тейлора
- •10.3.2 Гармонійна лінеаризація
- •10.3.3 Вібраційна лінеаризація
- •10.4 Тренувальні завдання
- •10.5 Тести
- •11 Дослідження нелінійних систем методом фазового простору
- •11.1 Загальні відомості про метод фазового простору
- •Фазові портрети нелінійних систем другого порядку
- •Методи побудови фазових портретів
- •11.3.1 Інтегрування рівнянь фазових траєкторій
- •11.3.2 Метод ізоклін
- •11.3.3 Метод припасовування
- •11.3.4 Метод зшивання
- •11.4 Тренувальні завдання
- •11.5 Тести
- •12 Аналіз нелінійних систем на стійкість і якість
- •Основні види стійкості нелінійних систем
- •Методи дослідження стійкості нелінійних систем
- •12.2.1 Перший метод Ляпунова
- •12.2.2 Другий метод Ляпунова
- •12.2.2.1 Поняття про знаковизначенні, знакопостійні і знакозмінні функції
- •12.2.2.2 ФункціяЛяпунова
- •12.2.2.3 Теореми Ляпунова
- •12.3 Методи побудови функції Ляпунова
- •12.3.1 Функція Ляпунова у вигляді квадратичних форм
- •12.3.2 Побудова функції Ляпунова методом г. Сеге
- •12.3.3 Побудова функції Ляпунова методом д. Шульца
- •12.3.4 Побудова функції Ляпунова методом Лур’є – Постникова
- •12.4 Приклади побудови функцій Ляпунова
- •12.5 Абсолютна стійкость по критерію Попова
- •12.6 Методи визначення якості регулювання нелінійних систем
- •12.7 Тренувальні завдання
- •12.8 Тести
- •13 Автоколивання в нелінійних системах
- •13.1 Режим автоколивань в нелінійних системах
- •13.2 Методи дослідження автоколивань в нелінійних системах
- •13.2.1 Критерій Бендіксона
- •13.2.2 Метод гармонійного балансу
- •13.3 Тренувальні завдання
- •13.4 Тести
- •14.1. Опис систем у просторі станів
- •14.2. Структура рішення рівнянь змінні стану
- •14.3. Характеристики систем у просторі станів
- •14.4. Нормальна форма рівнянь у просторі станів
- •14.5. Керування по стану. Системи керування
- •14.6. Оцінювання координат стану систем
- •14.7. Прямий кореневий метод синтезу систем керування
- •14.8 Тренувальні завдання
- •14.9 Тести
- •15. Дискретні системи автоматичного керування
- •15.1. Загальні відомості
- •15.2. Структура й класифікація імпульсних систем
- •15.3. Математичний апарат дослідження дискретних систем
- •15.4. Передатні функції розімкнутих імпульсних систем
- •15.5 Структурні схеми і передатні функції
- •15.6. Частотні характеристики імпульсних систем
- •15.7 Стійкість імпульсних систем
- •15.8. Перехідні процеси в імпульсних системах
- •Перехідний процес
- •15.9 Точність і корекція імпульсних систем
- •15.10. Опис дискретних систем у просторі станів
- •15.11 Тренувальні завдання
- •15.12 Тести
- •16 Оптимальне керування динамічними системами
- •16.1. Основні поняття систем оптимального керування
- •16.2. Завдання синтезу оптимальних систем
- •16.3. Самонастроювальні і динамічні системи, що самонавчаються, оптимального керування
- •16.4 Тести
- •Загальна характеристика об'єктів і систем автоматичного керування.
- •1.1 Короткі історичні відомості 3
- •Регулярні сигнали і їхні характеристики
- •Математичний опис автоматичних систем.
- •Частотний метод дослідження лінійних систем
- •Структурний аналіз лінійних систем
- •6. Стійкість лінійних систем
- •7. Синтез стійких систем з необхідним запасом стійкості
- •8. Якість процесів регулювання і методи її аналізу
- •9. Методи розрахунку настроювальних параметрів для сар
- •10.Методи лінеаризації характеристик нелінійних систем
- •11.Дослідження нелінійних систем методом фазового простору
- •14. Аналіз і синтез сау у просторі станів
- •15. Дискретні системи автоматичного керування
- •16. Оптимальне керування динамічними системами
12.3 Методи побудови функції Ляпунова
Однією з основних проблем, що виникають при практичному використанні другого методу Ляпунова, є вибір функції Ляпунова. Загального методу вибору функції Ляпунова не існує, але все ж є деякі рекомендації по складанню цієї функції для дослідження певного класу систем. Найчастіше цю функцію вибирають у вигляді квадратичних форм.
12.3.1 Функція Ляпунова у вигляді квадратичних форм
Для лінійних систем функція Ляпунова є квадратичними формами координат, коефіцієнти яких знаходяться порівняно легко. Хай дана система диференціальних рівнянь
і хай корені її характеристичного рівняння ліві, тобто мають негативні дійсні частини. Шукатимемо коєфіцієнтиli,jквадратичної форми
так, щоб повна похідна цієї форми
була визначено-негативною.
Для цього, слідуючи Ляпунову, задамося визначено-позитивною формою
(12.24)
з коефіцієнтами gij = gji.
Таку форму можна вибрати таким чином: задаються n довільними речовими коефіцієнтами, g11, g22, ..., gnn і потім визначають
.
Тоді G(у) є повним квадратом
і є безумовно-позитивною функцією.
Ляпуновим було доведено, що при негативних дійсних частинах коренів характеристичного рівняння завжди можна єдиним чином підібрати коефіцієнти форми, яка буде визначено-позитивною. Оскільки dL/dt < 0, тоL є функцією Ляпунова. Ляпунов вказав наступний метод знаходження функції V для лінійних систем. Шукатимемо лінійну форму змінних
яка задовольняла б умові
Для знаходження коефіцієнтів А1, А2, ..., An підставимо (12.25) в останній вираз, в результаті отримаємо
Оскільки y1,y2, ...,ynнезалежні змінні, та рівняння може існувати лише за умови, що всі коефіцієнти при у1, у2,...,уп тотожно рівні нулю. Знаходимо
Умовою спільності цих n рівнянь є рівність нулю визначника системи ( Δ = 0), де χ є коренем характеристичного рівняння. Оскільки в загальному випадку їх п, то можна знайти п значень для функції U, рівних U1, U2, ..., Un. Оскільки корені можуть бути комплексними, тобто
,
то
їм відповідають зв'язані значення
функції
і
.
Складемо далі функцію
якщо виявиться дійсною величиною, візьмемо Ui². Таким чином отримуємо додатно-визначену функцію, похідна за часом якою буде
де
Підставляючи в (12.29) значення dyi/dt з рівняння (12.21), зрештою отримуємо
де αі - дійсні частини коренів.
Таким чином, вказано спосіб побудови функції Ляпунова для лінійної системи.
12.3.2 Побудова функції Ляпунова методом г. Сеге
Згідно цьому методу функція Ляпунова записується у вигляді
де коефіцієнти aijє функціями фазових координат уi, тобто aij(yi).
Похідна від функції Ляпунова за часом буде
Роботу методу Г. Ceгe зручніше прослідкувати на прикладі систем другого порядку. В цьому випадку (12.31) прийме вигляд
Визначенню підлягають коефіцієнти а11(у1), а12(у1), а22(у2). Приймається, що а22(у2) = 1, тоді
і, отже, похідна (12.32) записується таким чином
(12.34)
Оскільки початкова нелінійна система другого порядку записується у вигляді
то похідна від функції Ляпунова через ці диференціальні рівняння буде
(12.35)
Припустимо, що права частина похідної функції Ляпунова є поліномом другого порядку відносно yk
де A0, A1, А2- поліноми, залежні від у1.
Для
забезпечення стійкості у всій області
(y1,
у2) необхідно зажадати,
щоб рівняння ψ(y1,
y2)
= 0 мало кратні корені, умовою якого
є рівність нулю дискримінанта:
.
Згідно методу Г. Сеге приймається А2 = А1 = 0 і на підставі цього складається система диференціальних рівнянь для визначення коефіцієнтів а11, а12:
(12.37)
Далі необхідно вирішити систему диференціальних рівнянь (12.37) відносно а11,а12. Знайдені значення коефіцієнтів підставляються у вираз для функції Ляпунова і її похідної, після чого перевіряється знаковизначеність функції V(у1, у2) і визначається знак похідної dV/dt. На підставі отриманих результатів про знаковизначеність функції V(y1, y2) і знаку dV/dt робиться вивід про стійкість системи автоматичного управління по Ляпунову: система буде стійкою, якщо отримали, що V(y1, у2) > 0, а dV/dt < 0.