
- •Биохимия
- •Химический состав живых организмов.
- •Химические вещества в живых организмах.
- •Неорганические вещества клетки
- •Функции воды
- •Неорганические соли
- •Роль солей в организме.
- •Органические вещества клетки.
- •Углеводы.
- •Химические свойства моносахаридов. Реакции по карбонильной группе
- •2. Восстановление.
- •Реакции по гидроксильным группам
- •Реакции брожения.
- •Олигосахариды. Полисахариды.
- •Строение дисахаридов.
- •Полисахариды.
- •Крахмал.
- •Амилаза и Амилопектин – две фракции крахмала.
- •Химические свойства полисахаридов:
- •Целлюлоза.
- •Химические свойства целлюлозы:
- •Липиды.
- •Простагландины.
- •Физические свойства липидов.
- •Функции жиров в организме:
- •Нуклеиновые кислоты
- •Биологически важные гетероциклические соединения
- •Кислотно-основные свойства гетероциклов
- •Строение мононуклеотидов
- •Название нуклеозидов и мононуклеотидов
- •Первичная структура днк
- •Вторичная структура днк
- •Структура рнк
- •Белки аминокислотный состав белков
- •Структуры белков первичная
- •Вторичная
- •Третичная
- •Свойства белков электрические
- •Денатурация белка
- •Функции белков в клетке
- •Физические и химические свойства
- •Химические свойства
- •Качественные реакции на белки
- •Биокатализ
- •2 Класс: Трансферазы
- •3 Класс (Гидролазы)
- •4 Класс: Лиазы
- •5 Класс: Изомеразы
- •6 Класс: Лигазы (синтетазы)
- •Номенклатура ферментов
- •Кофакторы
- •Водорастворимые
- •Жирорастворимые
- •I. Коферменты, входящие в состав оксиредуктаз (коферменты дегидрогеназ)
- •I.2.Флавиновые дегидрогеназы
- •I.4. Группа гемма
- •II. Коферменты переноса групп (трансферазы)
- •II.1. Аминотрансферазы.
- •Ацилтрансферазы
- •Основы кинетики ферментативных реакций Зависимость скорости ферментативной реакции от концентрации реагентов
- •Влияние температуры на скорость ферментативных реакций
- •Влияние рН на скорость ферментативной реакции
- •Ингибиторы ферментов
- •Динамическая биохимия
- •Катаболизм Специфические и общие пути катаболизма.
- •Катаболизм углеводов
- •Катаболизм липидов
- •Катаболизм белков
- •Катаболизм аминокислот.
- •Общий путь катаболизма.
- •Цпэ. Тканевое дыхание. Окислительное фосфорилирование.
- •Биосинтезы Биосинтез днк. Репликация.
- •Биосинтез рнк
- •Информационные рнк
- •Рибосомные рнк
- •Трансляция (биосинтез белка)
- •Биосинтез углеводов
- •Биосинтез гликогена
- •Биосинтез жиров
- •Биосинтез жирных кислот.
- •Биосинтез триацилглицеридов
- •Оглавление
2 Класс: Трансферазы
Эти ферменты катализируют всевозможные реакции переноса групп или атомов от одного соединения к другому.
Ферменты этого класса переносят аминогруппы (аминотрансферазы), метильные группы (метилтрансферазы), ацетильные группы (ацетилтрансферазы) и др. Например, аминотрансферазы (трансаминазы) переносят аминогруппы аминокислот на кетокислоты. Таким путем достигается эффект последовательной перестройки молекул в процессе обмена веществ.
Если переносится остаток фосфорной кислоты от нуклеозидфосфатов, то такой фермент называется киназой.
Важнейшей чертой процесса переноса является возможность переносить вместе с той или иной группой атомов и энергию, заключенную в химических связях, и тем самым создать условия для работы механизмов, осуществляющих процессы сопряжения различных биохимических реакций, когда энергия, выделяемая в одних реакциях, тут же расходуется на протекание других.
3 Класс (Гидролазы)
Эти ферменты можно рассматривать как трансферазы, переносящие ту или иную группировку на молекулу воды в реакциях гидролиза углеводов, белков, жиров.
Гидролазы катализируют расщепление связей С-С, С-O, C-N, O-P и ряда других.
R1 H R1-H
+
R2 H R2-OH
К числу гидролаз относится, в частности, протеазы. Смысл их химической работы заключается в том, что они разрывают пептидные связи между группами CO и NH, входящими в состав белковых молекул, что приводит к разрушению первичной структуры последних:
R1─CO─NH─R2 + H─OH → R1─CO─OH + NH2─R2
Легко видеть, что этот процесс можно рассматривать как перенос группы R1─CO─ на гидроксил ОН, а NH─ на водород Н. К группе гидролаз относятся пепсин, трипсин, химотрипсин и другие, участвующие в процессе пищеварения.
Протеазы проявляют большую активность. Так, 1 г пепсина способен разложить за два часа 25 кг сваренного яичного белка. Однако в организме эти ферменты часто находятся в неактивном состоянии. Неактивные формы называются энзимогенами («порождающими энзимы»). Активация энзимогена обусловлена отщеплением от белковой молекулы небольшого фрагмента – пептида с относительно малой молекулярной массой, удаление которого делает молекулу фермента способной вступать в промежуточные соединения с субстратом. Это один из способов, которым осуществляется регулирование деятельности ферментов.
Иногда один и тот же фермент способен катализировать гидролиз связей самой разной природы. Так, некоторые протеазы могут даже с большей эффективностью гидролизовать сложные эфиры, выступая как эстеразы («эстер» - сложный эфир). Важнейшими представителями эстераз являются липазы, ускоряющие гидролиз жиров – их ращепление на жирные кислоты и глицерин. В организме человека и животных липазы, содержатся в соке, выделяемой поджелудочной железой и печенью.
Очень большую роль играют ферменты, вызывающие гидролиз органических соединений фосфорной кислоты, называемые фосфатазами (дифосфатазами), которые регулируют присоединение фосфорной кислоты к различным углеводам или их отщепление. Процессы дыхания и брожения проходят через стадии образования и распада соединений фосфорной кислоты с глюкозой, с помощью которых организму удается использовать энергию, заключенную в углеводах (сахаре и крахмале).