- •Основы энергетической электроники
- •Попов и. И. Основы энергетической электроники: Учеб. Пособие.- Йошкар-Ола: МарГу, 2003
- •1.1 Принципы построения преобразователей
- •1.2 Классификация преобразователей.
- •2.2 Физические основы и конструкция полупроводниковых приборов
- •2.3 Устройство и характеристики полупроводникового диода
- •2.4 Принцип работы и конструкция тиристора
- •2.5. Устройство и характеристики симистора
- •2.6 Электрические свойства полупроводниковых вентилей
- •2.7. Включение управляющего вентиля по цепи управления
- •2.8. Процессы при переключениях.
- •2.9. Процессы при выключении тиристоров.
- •Лекция 3: Силовые преобразователи электроэнергии
- •3.1 Общие сведения.
- •3.2 Однофазный однополупериодный выпрямитель
- •3.2.1 Работа на активную нагрузку
- •3.2.2 Работа на активно-индуктивную нагрузку
- •Р ис. 3.3. Однофазный однополупериодный выпрямитель при активно - емкостной нагрузке (а) и временные диаграммы его работы, (б)для идеального выпрямителя, (в)для реального выпрямителя
- •3.2.3 Работа однофазного однополупериодного выпрямителя на активно-емкостную нагрузку
- •3.2.4 Работа на противоЭдс
- •3.2.5 Схема с шунтирующим (нулевым) диодом
- •3.2.6 Схемы выпрямления с удвоением и учетверением напряжения
- •3.3 Двухполупериодные выпрямители
- •3.3.1 Работа на активную нагрузку
- •3.3.2 Работа выпрямителя на активно-индуктивную нагрузку.
- •3.3.3 Работа выпрямителя при активно-емкостной нагрузке.
- •3.3.4 Схемы c «нулевым» диодом и мостовые несимметричные (полууправляемые) схемы.
- •3.4 Внешние нагрузочные характеристики выпрямителей.
- •3.5 Коммутационные процессы в выпрямителях.
- •3.6 Трехфазный выпрямитель с нулевым выводом.
- •3.7 Трехфазный мостовой выпрямитель
- •3.8. Составные (комбинированные) многоимпульсные выпрямители.
- •3.9. Принцип работы параллельного инвертора тока
- •3.10 Назначение и принцип действия однофазного ведомого сетью инвертора.
- •3.11 Принцип работы последовательного резонансного автономного инвертора.
- •3.12 Принцип работы преобразователя постоянного напряжения.
- •3.13 Мостовая схема импульсного преобразователя постоянного напряжения.
- •3.14 Реверсивный иппн.
- •3.15 Однофазные регуляторы переменного напряжения.
- •3.15.1. Фазовый метод регулирования переменного напряжения.
- •3.15.2. Широтно-импульсный метод регулирования переменного напряжения.
- •4.Высшие гармоники при работе преобразователей. Показатели работы преобразователей
- •4.1 Цель и задачи главы
- •4.2. Преобразователи большой и средней мощности
- •4.3 Преобразователи малой мощности
- •4.4 Трансформаторы для преобразователей.
- •4.5 Способы уменьшения влияния преобразователей на систему электроснабжения
- •4.5.1. Искажения напряжения в точке подключения преобразователя
- •4.5.2. Влияние преобразователей на сеть при отсутствии компенсирующих конденсаторов
- •4.5.3.Компенсация с помощью конденсаторных батарей
- •4.5.4. Компенсация с помощью резонансных контуров
- •4.6. Коэффициент полезного действия
- •4.7. Реактивная мощность. Коэффициент мощности
- •4.8. Компенсация реактивной мощности
- •4.8.1 Регулируемые с помощью тиристоров конденсаторные батареи
- •4.8.2. Реакторно - тиристорные компенсаторы
- •4.8.3 Компенсаторы реактивной мощности на основе преобразователей с принудительной коммутацией
- •5. Особенности эксплуататции силовых преобразователей.
- •5.1. Надежность силовых преобразователей. Общие понятия.
- •5.2. Вероятность отказа силовых полупроводниковых приборов
- •5.3. Надежность функционирования силовой части преобразователей
- •Потеря управляемости вентилем.
- •Сбои в системе управления
- •Другие аспекты надежности сп
- •5.4. Условия эксплуатации преобразователей
- •Питание силовой части преобразователей от сети переменного тока.
- •Питание силовой части преобразователей от сети постоянного тока.
- •Условия окружающей среды.
- •Эксплутационные режимы и классы нагрузки.
- •6. Защита от перенапряжений и сверхтоков.
- •6.1. Защита от перенапряжений.
- •6.2. Виды защиты от перенапряжений.
- •Защита от перегрузок по току
- •6.3. Аварийные режимы
- •6.4. Защита от сверхтоков на основе быстродействующих предохранителей
- •6.5. Анализ эффективности предохранительной и других защит полупроводниковых приборов
- •6.6. Пример выбора средств защиты преобразователя.
- •6.7. Быстродействующие выключатели.
- •6.8. Защитное отключение с помощью системы управления.
- •6.9. Датчики аварийных режимов. Датчики тока.
- •Номера элементов аналогичные рис. 6.19; h - напряжённость магнитного поля; нумерация на выносных осциллограммах следующая: 1, 2 - первый и второй возбуждающие лазерные импульсы; фэ - фотонное эхо
- •6.10. Магнитный усилитель
- •7. Лабораторный практикум
- •7.1 Однофазные выпрямители со сглаживающими фильтрами
- •7.1.1. Цель работы:
- •7.1.2. Приобретаемые навыки:
- •7.1.3. Меры безопасности:
- •7.1.4. Принцип работы
- •7.1.5. Описание лабораторного стенда
- •7.1.6. Порядок выполнения работы
- •7.1.7. Содержание отчета:
- •7.1.8. Контрольные вопросы:
- •7.2 Управляемый тиристорный выпрямитель
- •7.2.1. Цель работы:
- •7.2.2. Приобретаемые навыки:
- •7.2.3. Меры безопасности:
- •7.2.4. Принцип работы
- •7.2.5. Описание лабораторного стенда
- •7.2.7. Содержание отчета:
- •7.2.8. Контрольные вопросы:
- •7.3 Трехфазные выпрямители
- •7.3.1. Цель работы:
- •7.3.2. Приобретаемые навыки:
- •7.3.3. Меры безопасности:
- •7.3.4. Принцип работы
- •7.3.5. Описание лабораторного стенда
- •7.3.6. Порядок выполнения работы:
- •7.4 Параллельный инвертор тока
- •7.4.4. Принцип работы
- •7.4.5. Описание лабораторного стенда.
- •7.4.6. Порядок выполнения работы:
- •7.5 Реверсивный широтно - импульсный преобразователь постоянного напряжения (риппн) на полностью управляемых тиристорах.
- •7.5.3. Меры безопасности
- •7.5.4. Принцип работы
- •7.5.5. Описание компьютерной модели риппн
- •7.5.6. Контролируемые и снимаемые параметры преобразователя.
- •7.5.7 Порядок выполнения работы.
- •7.5.8. Отчет должен содержать:
- •7.5.9. Контрольные вопросы.
- •7.6. Однофазные регуляторы переменного напряжения.
- •7.6.1. Цель лабораторной работы:
- •7.6.2. Приобретенные навыки
- •7.6.3. Меры безопасности
- •7.6.4. Принцип работы рпн.
- •Описание компьютерной модели рпн.
- •7.6.6. Порядок выполнения лабораторной работы.
- •7.6.7. Содержание отчета
- •7.6.8. Контрольные вопросы
- •7.7. Однофазный ведомый сетью инвертор (овси)
- •7.7.1. Цель лабораторной работы:
- •7.7.2. Приобретенные навыки
- •7.7.3. Меры безопасности
- •7.7.4. Принцип работы.
- •7.7.5. Описание компьютерной модели овси.
- •7.7.6.Порядок выполнения работы
- •7.7.7. Содержание отчета.
- •7.7.8. Контрольные вопросы
- •7.8 Последовательный автономный резонансный инвертор (аир)
- •7.8.1. Цель лабораторной работы:
- •7.8.2. Приобретенные навыки
- •7.8.3. Меры безопасности
- •7.8.4. Принцип работы.
- •7.8.5. Описание компьютерной модели аир.
- •7.8.6. Порядок выполнения лабораторной работы.
- •7.8.7. Содержание отчета.
- •7.8.8. Контрольные вопросы
- •8. Практикум по решению задач
- •8.1 Тепловые характеристики полупроводниковых вентилей
- •8.2 Расчет управляемой мостовой схемы выпрямителя
- •8.3 Расчет трехфазного мостового выпрямителя
- •8.4 Расчет автономного инвертора.
- •8.5 Основные показатели и характеристики регуляторов
- •8.6 Влияние преобразователей на питающую сеть
- •Литература
4.5.4. Компенсация с помощью резонансных контуров
Как видно из рис.4.13, использование конденсаторных батарей для компенсации высших гармонических весьма ограничено из-за опасности возникновения резонанса. Лучшим вариантом является включение конденсаторов в состав контура с резонансом напряжений, для чего необходимо последовательно с конденсатором емкостью С включить реактор с индуктивностью Lp (рис. 4.14). Такая цепь имеет резонансную частоту pk с кратностью по отношению к частоте сети, определяемой по (4.30).
Отсасывающая цепь и индуктивность сети Lc. также образуют резонансный контур с частотой кратности
рез=
(4.32)
Из-за
наличия добавочной индуктивности L
установленная мощность конденсатора
уменьшается в
раз, и в такое же число раз повышается
на нем напряжение.
Целесообразнее
кратность частоты контура с резонансом
напряжений выбирать в диапазоне
4,4
pk
4,7.
Тогда
и
компенсирующий конденсатор будет
использоваться по напряжению полностью. Так как, согласно (4.32), рез всегда меньше pk , опасность возникновения резонанса при шестипульсной схеме выпрямления отсутст
Рис. 4.14. Подключение резонансных контуров для фильтрации высших гармонических
вует.
Д
альнейшее
снижение отрицательного влияния
преобразователя на сеть достигается
за счет параллельного подключения
нескольких цепей с различными, наперед
заданными резонансными частотами.
В [20] привыходятся основные формулы, справедливые в случае 13, для определения:
• гармоник тока;
• гармоник напряжения;
• коэффициента искажения формы кривой тока,
как для одиночных преобразователей разной схемы выполнения, так и группы преобразователей, работающих и согласованно, и раздельно. При этом также приводятся формулы для определения сопротивлений элементов сетей 6 -10 кВ при 13, необходимые для расчета соответствующих величин и элементов фильтров.
Надо иметь в виду, что для расчета гармоник тока во всех ветвях схемы определяются коэффициенты токораспределения для ветвей kij, где i и j — номера секции и преобразователя соответственно
Kqp
=
где ХH — сопротивление нагрузки i-й секции шин; Хс — сопротивление питающей энергосистемы qi; pj.
После соответствующих расчетов, имея в качестве исходных данных расчетные и допустимые значения коэффициента искажения, гармоник линейного напряжения, гармоник тока, необходимую компенсирующую реактивную нагрузку секции и т. д., приступают к выбору батарей конденсаторов фильтров и реакторов фильтра, оценивают эффективность применения фильтра. В конечном счете принимается решение о необходимости применения фильтров и по справочнику выбирается соответствующий фильтр.
В настоящее время промышленностью серийно выпускаются фильтры типа Ф для сетей напряжением 10 кВ и ТКФ для сетей напряжением 380/220В. Фильтры типа Ф выпускаются на гармоники, равные 5, 7, 11 и 13. При этом обозначения следующие: первая цифра после буквы Ф означает номер гармоники, следующие две — номинальное напряжение в [кВ], далее идут цифры, обозначающие номинальную мощность в [квар].
Например, фильтр на = 11 с номинальным напряжением 10 кВ и мощностью 2400 квар имеет маркировку Ф11-10-2400. В справочниках приводятся номинальный и длительно допустимый токи.
В маркировку фильтров типа ТКФ включаются номинальная мощность в квар и номинальное напряжение в [В]. Например, фильтр на 340 квар с напряжением 380 В обозначается ТКФ-340/380. При этом приводятся данные по диапазону регулирования мощности и допустимые значения тока на каждой гармонике
