Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан чо.doc
Скачиваний:
26
Добавлен:
25.04.2019
Размер:
1.08 Mб
Скачать

23. Теорема Роля

Теорема Ролля. Если функция y= f(x) непрерывна на отрезке [ab], дифференцируема во всех внутренних точках этого отрезка (т.е. на (аb)) и на концах отрезка обращается в нуль f(a) = f(b) = 0, то на (ab) найдется хотя бы одна точка c  (ab), в которой f'(c) = 0.

Доказательство. Так как функция f(x) непрерывна на [ab], то по одной из теорем о непрерывных функциях она достигает на этом отрезке наибольшего значения и наименьшего. Пусть 

Заметим, что если М = m, то f(x) = const = 0 (по условию теоремы f(a)=f(b)=0) и, следовательно, f'(x)=0при всех x  [ab] .

Предположим, что M≠m, тогда, по крайней мере, одно из этих чисел отлично от нуля. Для определенности будем считать, что М ≠0 и М > 0.

Пусть в точке x = c f(c)=М, при этом c≠a и с ≠ b, т.к. f(a)=f(b)=0. Придадим значению c приращение Δx и рассмотрим новую точку cx. Поскольку f(c) – наибольшее значение функции, то f(cx) – f(c)≤0 для любого Δx. Отсюда следует, что

Переходя в этих неравенствах к пределу при Δx→0 и учитывая, что производная при x = c существует, будем иметь:

Но неравенства f'(c) ≤ 0 и f'(c) ≥ 0 одновременно возможны лишь в случае, когда

Эта теорема имеет простой геометрический смысл. Если непрерывная кривая, имеющая в каждой точке касательную, пересекает ось Ox в точках x=a и x=b, то на этой кривой найдется хотя бы одна точка с абсциссой ca < c < b, в которой касательная параллельна оси Ox.

Заметим, что доказанная теорема останется справедливой, если предположить, что на концах отрезка функция принимает равные значения f(a)=f(b), не обязательно равные нулю.

Кроме того, отметим, что если внутри [ab] найдется хотя бы одна точка, в которой производная функции f(x) не существует, то утверждение теоремы может оказаться неверным.

f'(c)=0. Теорема доказана.

24. Теорема Лагранжа

Теорема Лагранжа. Если функция y= f(x) непрерывна на [ab] и дифференцируема во всех внутренних точках этого отрезка, то внутри отрезка [ab] найдется хотя бы одна точка ca<c<b такая, чтоf(b) – f(a)=f'(c)(b – a).

Доказательство. Обозначим   и рассмотрим вспомогательную функцию F(x) = f(x) – f(a) – k(x – a).

Выясним геометрический смысл введенной функции. Для этого рассмотрим график данной функции на [ab] и напишем уравнение хорды АВ. Заметим, что угловой коэффициент хорды  и она проходит через точку A(а; f(a)). Следовательно, ее уравнение

y = f(a) + k(x – a).

Но F(x)=f(x)–[f(a)+k(x–a)]. ПоэтомуF(x) при каждом x есть разность ординат графика y= f(x) и хорды, соответствующих точкам с одинаковой абсциссой.

Легко видеть, что F(x) непрерывна на [ab] , как разность непрерывных функций. Эта функция дифференцируема внутри [ab] и F(a)=F(b)=0. Следовательно, к функции F(x) можно применить теорему Ролля. Согласно этой теореме найдется точка c  (ab), что F'(c)=0. Но '(x) = f'(x) – k, а значит,F'(c) = f'(c) – k = 0.

Подставляя в это равенство значение k, получим

,

что и требовалось доказать.

Теорему Лагранжа геометрически можно пояснить так. Рассмотрим график функции y=f(x), удовлетворяющий условиям теоремы и соединим концы графика на [ab] хордой AB. Как мы уже отметили, отношение  для хорды AB, а f'(c) есть угловой коэффициент касательной. Следовательно, теорема утверждает, что на графике функции y=f(x) найдется хотя бы одна точка, в которой касательная к графику параллельна хорде, соединяющей концы дуги.