Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan_shpory_ne_izmenennye.doc
Скачиваний:
57
Добавлен:
24.04.2019
Размер:
2.06 Mб
Скачать

42. Линейные неоднородные дифференциальные уравнения. Метод Лагранжа вариации произвольных постоянных.

Линейным дифференциальным уравнением n-го порядка называется уравнение, в которое неизвестная функция y(x) и её производные входят линейно, т.е. в первой степени:

;

(1)

Если старший коэффициент q0 (x) отличен от нуля на интервале (a, b), т.е. для , то, умножая (1) на , приводим уравнение к виду со старшим коэффициентом, равным 1:

;

(2)

; дальше мы будем рассматривать уравнение (2). Если правая часть уравнения тождественно равна нулю на рассматриваемом интервале (f(x)=0 при ), то уравнение называется однородным. Таким образом, однородное уравнение - это уравнение вида

;

(3)

Метод Лагранжа.

Рассмотрим метод вариации произвольных постоянных решения неоднородного уравнения. Принципиально то, что этот метод работает, если известна фундаментальная система решений линейного уравнения. Основную идею этого метода изложим для самого простого случая неоднородного уравнения второго порядка

;

(4)

Пусть y1(x), y2(x) - фундаментальная система решений соответствующего однородного уравнения

;

(5)

yоо(x) = C1 y1(x) + C2 y2(x) - общее решение однородного уравнения (5). Идея метода Лагранжа состоит в следующем. Ищем общее решение неоднородного уравнения (4) в том же виде y(x)=C1(x)y1(x) + C2 (x)y2(x), предполагая, что постоянные C1, C2 - не постоянные, а функции, зависящие от x: C1 = C1 (x), C2 = C2(x). Мы должны найти эти функции. Находим производную : . Дальше надо вычислять вторую производную. Воспользуемся тем обстоятельством, что вместо одной функции y(x) мы ищем две функции C1 (x) и C2(x), и, как следствие, можем наложить произвольную связь на эти функции. Для того, чтобы в выражении для второй производной не участвовали вторые производные функций C1 (x) и C2(x), в качестве этой связи положим

;

(6)

Тогда . Подставляем выражения для y(x) и её производных в уравнение (4): Преобразуем: Выражения в квадратных скобках раны нулю, так как функции y1(x), y2(x) - решения однородного уравнения (5), поэтому окончательно

;

(7)

Уравнения (6),(7) дают замкнутую систему для функций и :

(8)

определитель этой системы совпадает с вронскианом функций y1(x), y2(x) и поэтому отличен от нуля, следовательно, система имеет единственное решение , . Находя это решения и интегрируя выражения производных для и , получим C1 (x) и C2(x), а значит, и общее решение неоднородного уравнения (4) y(x) = C1 y1(x) + C2 y2(x).

43. Метод неопределенных коэффициентов для построения частных решений неоднородных уравнений с постоянными коэффициентами и правой частью специального вида.

Для отыскания частных решений неоднородных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида: Pk(x)exp(ax)cos(bx) + Qm(x)exp(ax)sin(bx), где Pk(x), Qm(x) — многочлены степени k и m соответственно, существует простой алгоритм построения частного решения, называемый методом подбора.

Метод подбора, или метод неопределенных коэффициентов, состоит в следующем. Искомое решение уравнения записывается в виде: (Pr(x)exp(ax)cos(bx) + Qr(x)exp(ax)sin(bx))xs, где Pr(x), Qr(x) — многочлены степени r = max(k, m) с неизвестными коэффициентами pr , pr-1, ..., p1, p0, qr, qr-1, ..., q1, q0. Сомножитель xs называют резонансным сомножителем. Резонанс имеет место в случаях, когда среди корней характеристического уравнения есть корень l =a ± ib  кратности s. Т.е. если среди корней характеристического уравнения соответствующего однородного уравнения есть такой, что его действительная часть совпадает с коэффициентом в показателе степени экспоненты, а мнимая — с коэффициентом в аргументе тригонометрической функции в правой части уравнения, и кратность этого корня s, то в искомом частном решении присутствует резонансный сомножитель xs. Если же такого совпадения нет (s=0),  то резонансный сомножитель отсутствует.

Подставив выражение для частного решения  в левую часть уравнения, получим обобщенный многочлен того же вида, что и многочлен в правой части уравнения, коэффициенты которого неизвестны. Два обобщенных многочлена равны тогда и только тогда, когда равны коэффициенты при сомножителях вида xtexp(ax)sin(bx), xtexp(ax)cos(bx)  с одинаковыми степенями t. Приравняв коэффициенты при таких сомножителях, получим систему 2(r+1) линейных алгебраических уравнений относительно 2(r+1) неизвестных. Можно показать, что такая система совместна и имеет единственное решение.

??? Системы линейных дифференциальных уравнений с постоянными коэффициентами. Задача Коши. Теорема существования и единственности решения.

Системой ДУ называется совокупность ДУ, каждое из которых содержит независимую переменную, искомые функции и их производные.

Нормальной системой линейных ДУ с действительными коэффициентами, называется система вида:

………………………………………. (1)

или более коротко

(2)

где - действительная матрица, а - действительный вектор, определенный при

Однородной системой линейных уравнений, соответствующей системе (2), называется система уравнений

(3)

Система линейных дифференциальных уравнений с постоянными коэффициентами имеет вид

, (1.1)

где - -мерный вектор, - постоянная квадратная матрица размера .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]