
- •2. Классификация направляемых волн
- •3. Энергия и мощность эмв. Теорема Умова-Пойтинга.
- •4. Вектор Пойтинга. Активная и реактивная мощность эмп. Скорость движения эмв.
- •Активная мощность
- •Реактивная мощность
- •5. Плоские однородные волны. Коэффициент ослабления коэффициент фазы.
- •6. Бегущие и стоячие волны. Прямая и обратная волны.
- •Характеристика
- •7. Телеграфные уравнения. Волновые уравнения для тока и напряжения.
- •8. Основные параметры эмв. Поляризация эмв. Длина волны.
- •9. Групповая и фазовая скорости. Скорость движения энергии эмв.
- •10. Согласование линии передачи с генератором и нагрузкой (общие принципы)
- •11. Критерии согласования лп с генератором и нагрузкой.
- •12. Мощность потерь проводимости. Сопротивление проводников на различных частотах.
- •13. Граничные условия для векторов эмп. Эмп на границе раздела с проводником.
- •14. Эмп в проводнике. Скин-эффект. Локализация эмп с помощью проводников.
- •17. Потери в диэлектрике и их влияние на характеристики линии передач.
- •18. Эмв на границах раздела сред. Полное прохождение и полное отражение. Влияние поляризации на распространение эмв.
- •Коэффициенты отражения и преломления.
- •Формулы Френеля
- •19. Физические принципы распространения эмв в линиях передач различных типов.
- •20. Линии передач т-волны (Основные конструкции, параметры, достоинства и недостатки)
- •21. Коаксиальная линия передач. Основные конструкции и характеристики.
- •22 Вопрос «Двухпроводная линия передачи»
- •26 Вопрос «Условия распространения волн в односвязных волноводах»
- •27 Вопрос «Типы волн в прямоугольном волноводе
- •28 Вопрос «Круглый волновод»
- •25 Вопрос «Расчет согласующих шлейфов»
- •34. Преимущества волоконно-оптической системы передачи (восп)
- •35. Разновидности конструкций полосковых линий. Полосковые линии.
- •36. Микрополосковые линии. Компланарные линии.
- •38. Дисперсия в лп. Искажение сигналов в лп. Методы минимизации искажений сигналов.
- •39. Коэффициенты отражения и прохождения. Ксв. Кбв. Согласование сред и лп.
- •42. Защита лс от мешающих влияний.
- •43. Защита кабелей от почвенной, электрокоррозии, межкристаллитной коррозии.
- •44. Область применения лп различных типов.
- •45.Взаимные влияния в лп. Эквивалентные схемы влияний.
- •46.Меры по уменьшению взаимных влияний в лп различных типов
- •47.Согласующие устройства. Узкополосное и широкополосное согласование
6. Бегущие и стоячие волны. Прямая и обратная волны.
Бегущая волна — волновое движение, при котором поверхность равных фаз (фазовые волновые фронты) перемещается с конечной скоростью (постоянной для однородной среды). С бегущей волной, групповая скорость которой отлична от нуля, связан перенос энергии, импульса или других характеристик процесса[1].
Бегущая волна - волна, которая при распространении в среде переносит энергию (в отличие от стоячей волны). Примеры: упругая волна в стержне, столбе газа, жидкости, электромагнитная волна вдоль длинной линии, в волноводе[2].
Бегущая волна — волновое возмущение, изменяющееся во времени и пространстве согласно выражению
y(z,t) = A(z,t)sin(kz-wt+φ)
где A(z,t) —
амплитудная огибающая волны, k — волновое
число и φ — фаза
колебаний. Фазовая
скорость
этой
волны даётся выражением
=
где
—
это длина
волны.
Частные случаи.
Стоячая волна является частным случаем бегущей волны с =0.
То есть, две одинаковые периодические бегущие волны (в рамках справедливости принципа суперпозиции), распространяющиеся в противоположных направлениях, образуют стоячую волну.
Частично бегущая волна.
Возникает при разных амплитудах.
Характеристика
Характеризуется или коэффициентом бегучести волны (КБВ), или коэффициентом стоячести волны (KCB), или коэффициентом отражения Г, равным отношению амплитуд встречных волн[1]:
KCB=1/КБВ=(1+|Г|²)/(1-|Г|²)
По линиям передач оптимальная передача энергии требует их согласование: получение в линии режима бегущей волны - KCB=1, Г=0.
Такой режим для цепей с сосредоточенными параметрами будет соответствовать равенству внутреннего сопротивления источника сопротивлению нагрузки.
Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.
Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе[1]; в природе — волны Шумана.
Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде[2] и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.
Для демонстрации стоячих волн в газе используют трубу Рубенса.
ОБРАТНАЯ ВОЛНА - волна с противоположно направленными фазовой и групповой скоростями. Впервые термин "О. в." введён в ВЧ-электронике, где на взаимодействии О. в. с электронными пучками основано действие широкого класса СВЧ-приборов - ламп обратной волны. Волны с подобными свойствами известны также в пространственно-периодич. структурах и средах. Простейшими примерами О. в. являются системы с плоскими волнами, в частности в линиях передачи, где распространение волн возможно только вдоль к--л. определённого направления.