
- •2. Классификация направляемых волн
- •3. Энергия и мощность эмв. Теорема Умова-Пойтинга.
- •4. Вектор Пойтинга. Активная и реактивная мощность эмп. Скорость движения эмв.
- •Активная мощность
- •Реактивная мощность
- •5. Плоские однородные волны. Коэффициент ослабления коэффициент фазы.
- •6. Бегущие и стоячие волны. Прямая и обратная волны.
- •Характеристика
- •7. Телеграфные уравнения. Волновые уравнения для тока и напряжения.
- •8. Основные параметры эмв. Поляризация эмв. Длина волны.
- •9. Групповая и фазовая скорости. Скорость движения энергии эмв.
- •10. Согласование линии передачи с генератором и нагрузкой (общие принципы)
- •11. Критерии согласования лп с генератором и нагрузкой.
- •12. Мощность потерь проводимости. Сопротивление проводников на различных частотах.
- •13. Граничные условия для векторов эмп. Эмп на границе раздела с проводником.
- •14. Эмп в проводнике. Скин-эффект. Локализация эмп с помощью проводников.
- •17. Потери в диэлектрике и их влияние на характеристики линии передач.
- •18. Эмв на границах раздела сред. Полное прохождение и полное отражение. Влияние поляризации на распространение эмв.
- •Коэффициенты отражения и преломления.
- •Формулы Френеля
- •19. Физические принципы распространения эмв в линиях передач различных типов.
- •20. Линии передач т-волны (Основные конструкции, параметры, достоинства и недостатки)
- •21. Коаксиальная линия передач. Основные конструкции и характеристики.
- •22 Вопрос «Двухпроводная линия передачи»
- •26 Вопрос «Условия распространения волн в односвязных волноводах»
- •27 Вопрос «Типы волн в прямоугольном волноводе
- •28 Вопрос «Круглый волновод»
- •25 Вопрос «Расчет согласующих шлейфов»
- •34. Преимущества волоконно-оптической системы передачи (восп)
- •35. Разновидности конструкций полосковых линий. Полосковые линии.
- •36. Микрополосковые линии. Компланарные линии.
- •38. Дисперсия в лп. Искажение сигналов в лп. Методы минимизации искажений сигналов.
- •39. Коэффициенты отражения и прохождения. Ксв. Кбв. Согласование сред и лп.
- •42. Защита лс от мешающих влияний.
- •43. Защита кабелей от почвенной, электрокоррозии, межкристаллитной коррозии.
- •44. Область применения лп различных типов.
- •45.Взаимные влияния в лп. Эквивалентные схемы влияний.
- •46.Меры по уменьшению взаимных влияний в лп различных типов
- •47.Согласующие устройства. Узкополосное и широкополосное согласование
43. Защита кабелей от почвенной, электрокоррозии, межкристаллитной коррозии.
МЕРЫ ЗАЩИТЫ ОТ КОРРОЗИИ
Защитные меры по коррозии оболочек кабелей связи производятся как на установках электрифицированного транспорта, так и на сооружениях связи.
На электрифицированном транспорте осуществляются следующие меры защиты:
уменьшают сопротивление рельсов путем качественной сварки стыков;
улучшают изоляцию рельсов от земли (полотно из гравия, щебня, песка);
переполюсовывают источники питания так, чтобы заземлялся минусовый электрод.
На сооружениях связи такими мерами защиты являются:
выбор трассы с менее агрессивным грунтом (песок, глина, суглинок, нежирный чернозем);
применение кабелей с герметичными полиэтиленовыми шлангами поверх металлических оболочек (обязательно для алюминия и стали);
электрический дренаж (от электрической коррозии);
катодные установки (от электрической и почвенной коррозии);
изолирующие муфты (от электрической коррозии);
протекторные установки (от почвенной коррозии);
антивибраторы амортизирующие, рессорные, подвески (от межкристаллитной коррозии).
Электрический дренаж, катодные и протекторные установки относятся к активным электрическим методам защиты, остальные — к пассивным.
Электрический дренаж — это отвод блуждающих токов с защищаемого кабеля посредством проводника. Дренаж подключается к кабелю в середине анодной зоны, т. е. там, где кабель имеет наибольший положительный потенциал по отношению к земле. Блуждающие токи по дренажному кабелю отводятся из оболочки защищаемого кабеля к рельсам или минусовой шине, питающей подстанции. В результате анодная зона на кабеле превращается в катодную (рис. 27.7).
"При необходимости устанавливают несколько дренажей с тем, чтобы на всем сближении кабелей связи с эл. ж. д. оболочка имела отрицательный потенциал. Такие дренажи называются прямыми электрическими дренажами.
Протекторная защита, по существу, аналогична катодной защите, только в данном случае для создания отрицательного потенциала на оболочке кабеля используется не посторонний источник тока, а ток, появляющийся за счет разности электрохимических потенциалов при соединении различных металлов. Этот ток направлен от более высокого потенциала к более низкому. В результате его действия разрушению подвергается металл с более низким потенциалом.
Обычно для протекторных электродов (протекторов) используются магниевые сплавы МЛ, состоящие из магния, алюминия и цинка. Электрод представляет собой цилиндр длиной 600—900 мм, диаметром 150—240 мм с контактным стальным стержнем (рис. 27.11). Применяются три типа протекторов: ПМ-5У, ПМ-10У и ПМ-20У.
принцип протекторной защиты состоит в том, что катодная зона на оболочке кабеля создается в результате ее соединения изолированным проводом с заземленным протекторным электродом, имеющим более низкий электрохимический потенциал, чем потенциал заземляемой оболочки, Такой электрод является анодом, и ток с него будет стекать в землю. Оболочка кабеля при этом становится катодом, и следовательно, защищена от коррозии. Например, разность потенциала кабеля со свинцовой оболочкой и магниевого электрода составит U=—2,37— (-0,126) = -2,24 В.
Протекторные электроды применяются главным образом для защиты от почвенной коррозии и устанавливаются по два-три на усилительный участок, при этом расстояние между ними и кафелем должно быть не нее 2—6 м, глубина закопки 0,6 - 1,8 м. Протектор включается через контрольно-испытательные пункты (КИП)
УСТРОЙСТВА ПАССИВНОЙ ЗАЩИТЫ
Изолирующие муфты (рис. 27.11), устанавливаемые на кабеле, разрывают металлическую оболочку и тем самым уменьшают величину блуждающего тока.
Рессорную подвеску кабеля (рис. 27.12) применяют для уменьшения вредного действия вибрации при прокладке кабеля по мостам, вблизи автомобильных и железных дорог.
Кроме того, при подвеске кабелей по опорам используют резиновые или пластмассовые гасители в местах крепления кабеля.
ОСОБЕННОСТИ ЗАЩИТЫ ОТ КОРРОЗИИ АЛЮМИНИЕВЫХ И СТАЛЬНЫХ ОБОЛОЧЕК
Сопоставляя подверженность коррозии применяемых в настоящее время кабельных оболочек из свинца, стали и алюминия, следует отметить что наиболее стойкими .к агрессивному воздействию коррозии являются свинец, сталь и, наконец, алюминий. Сильная подверженность алюминия коррозии обусловлена тем, что он нарушается не только в анодной зоне, но и при больших катодных потенциалах. Кроме того, алюминиевые оболочки подвергаются коррозии в результате действия гальванических пар, образующихся в местах контакта оболочек со сталью, медью и свинцом.
Алюминий свободен от коррозии лишь в узком диапазоне отрицательных потенциалов—(0,52—1,48).Свинец и сталь коррозируют лишь в анодных зонах (при потенциалах, больших, чем —0,9 В).
При сравнении различных оболочек следует также иметь в виду, что сталь весьма чувствительна к воздействию кислотных сред и ведет себя довольно стойко в щелочных средах. Свинец и алюминий подвержены коррозии в обоих случаях. Стальная гофрированная оболочка разрушается, как правило, по вершинам гофр. Исходя из изложенного, кабели связи в алюминиевых и стальных оболочках для защиты от коррозии обязательно должны иметь поверх металла герметичную полиэтиленовую оболочку, наносимую в процессе изготовления кабелей.
С целью повышения эффективности защиты дополнительно могут быть применены электрохимические методы защиты с помощью протекторов, катодной защиты, а также электрических дренажей, оборудуемых на участках действия блуждающих токов.