
- •Квантова електроніка
- •Теми лекцій
- •Вступ Історія розвитку квантової електроніки і оптоелектроніки Квантова електроніка і оптоелектроніка достатньо молоді науки.
- •Розглянемо історію їх виникнення і розвитку.
- •Основні поняття і визначення
- •Поняття квантових систем
- •Квантові переходи
- •Самочинне (спонтанне) і вимушене випромінювання
- •Коефіцієнт є число типів коливань в одиничному об'ємі й в одиничному інтервалі частот для вільного простору. Безвипромінювальні переходи
- •Зв'язок між коефіцієнтами ейнштейна
- •Дипольне випромінювання
- •Розширення спектральних ліній
- •1. Природне розширення.
- •2. Допплерівське розширення.
- •3. Розширення унаслідок зіткнень.
- •4. Розширення за рахунок впливу внутрішніх (внутрікрісталічних) і зовнішніх електричного і магнітного полів.
- •Розсіяння світла і двохфотонне поглинання
- •Інверсна населеність
- •Методи здійснення інверсної населеності
- •Сортування атомних та молекулярних пучків в просторі.
- •Метод допоміжного випромінювання (накачка).
- •Інверсна населеність в газах за допомогою електричного розряду.
- •Інверсна населеність в напівпровідниках.
- •Принцип роботи квантових підсилювачів та генераторів збудження активної речовини (накачка) схеми роботи квантових підсилювачів і генераторів
- •Збудження активної речовини (накачування)
- •1. Накачування допоміжним випромінюванням (оптична накачка).
- •2. Накачування за допомогою газового розряду.
- •Схеми роботи квантових підсилювачів і генераторів
- •Дворівнева схема.
- •Трирівневі схеми.
- •Оптичні резонатори
- •Добротність резонатора
- •Типи резонаторів
- •1. Плоскопаралельний резонатор (плоский, резонатор Фабрі-Перо)
- •Конфокальний резонатор (сферичний)
- •3. Радіус світлової плями, який відповідає зменшенню поля в тем00-моде в е раз:
- •3. Резонатори з довільними сферичними дзеркалами.
- •4.Кільцевий резонатор.
- •Составний резонатор.
- •Резонатор з брегівським дзеркалом.
- •7. Резонатор з розподіленим зворотним зв'язком.
- •Генерація , умова самозбудження і насичення посилення модуляція добротності лазера
- •Методи модуляції добротності лазера:
- •Властивості лазерного випромінювання
- •Монохроматичність
- •Когерентність.
- •Спрямованість (направленість) лазерного випромінювання
- •Принцип роботи квантових приладів, Узагальнення
- •Квантові генератори світла на газоподібній речовині
- •Квантові генератори світла на твердому тілі
- •Напівпровідникові лазери
- •Інші типи лазерів
- •1. Рідкий лазер
- •Лазер на фарбниках
- •1 Загальна характеристика напівпровідникових лазерів
- •Инжекционные лазери на гомопереходах
- •Лазери на гетеропереходах
- •Напівпровідникові лазери, що накачуються електронним пучком.
- •Застосування квантових генераторів світла
- •Міри безпеки при роботі з квантовими приладами
Квантові генератори світла на твердому тілі
Оптичний квантовий генератор складається з трьох основних елементів:
активної речовини, що є джерелом індукованого випромінювання,
джерела збудження (підкачування), що постачає енергією активну речовину,
резонансної системи.
Активною речовиною у лазері може бути тверде, газоподібне або рідке тіло. Вперше принципи роботи квантових генераторів на твердому тілі були перевірені на кристалі рубіна. Червоний колір рубіна пояснюється тим, що при освітленні його природним світлом частина атомів хрому збуджується, а потім спонтанно переходить з верхніх енергетичних рівнів на нижні, випромінюючи при цьому червоне світло, яке ми й бачимо. Рубіновий генератор випромінює імпульси світла на хвилі близько 0,7 мк з дуже вузькою смугою (менше 1Å).
Будова рубінового генератора показана на рис.
1-охолоджувач, 2-пружина, 3-скляна трубка, 4-рубін, 5-імпульсна лампа, 6-вихідний пучок, 7-джерело живлення.
Кристал рубіна виготовляється у вигляді стержня довжиною близько 4 см і діаметром близько 0,5 см. Довжина і діаметр можуть бути й іншими, але, як правило, знаходяться в межах 0,1-2 см по діаметру і 2-23 см - по довжині. Торці рубінового стержня полірують до одержання оптичноплоскої поверхні. Срібне покриття наноситься так, що одна торцева поверхня рубіна стає повністю відбивальною, а друга може мати коефіцієнт пропускання від 5 до 80%. Коефіцієнт відбивання від них рідко перевищує 85 або 90%. Якщо необхідно одержати більший коефіцієнт відбивання, використовують багатошарові діелектричні плівки.
Ккд лазера визначається як відношення когерентно випромінюваної енергії до електричної енергії, яка затрачається у імпульсній лампі, і є функцією багатьох параметрів. До них відносяться спектральні характеристики імпульсної лампи.
Крім рубіна, для створення квантових генераторів на твердому тілі застосовують окис магнію МgO, топаз, смарагд, уваровіт, уран та ін. Усі ці матеріали мають широкі смуги поглинання і їх люмінесцентні переходи дають лінії, що лежать у червоній області світлового спектра.
Хороші наслідки були досягнуті в дослідах з фтористим кальцієм СаF2 з домішками тривалентного урану або самарію. Є повідомлення про створення лазера, в якому використовується кристал вольфрамату кальцію СаWO4 з домішкою іонів неодиму. Робляться спроби використання як активної речовини люмінесцентних матеріалів типу скла. Випробовувались лазери на склі з домішками неодиму, також із застосуванням органічного скла. Найбільш складною технічною проблемою, що стоїть перед вченими, які розробляють лазери, є відведення тієї частки енергії випромінювання у кристалі, яка перетворюється у тепло.
Нагрівання має великий вплив на роботу кристалічних квантових генераторів. Експерименти показують, що генератор на рубіні перестає працювати, як тільки він перегріється. Внутрішнє нагрівання активної речовини не дозволяє створювати генератори світла на твердому тілі, що працюють у безперервному режимі, навіть якщо як охолоджувач використовується рідкий азот. При нагріванні активної речовини розширюється лінія випромінювання генератора.
Лазер на іонах неодима. Найбільш поширеним класичним лазером, випромінюючим в ближній інфрачервоній області спектру (1,06 мкм), є лазер на іттрій-алюмінієвом гранаті з неодімом. Робочими частинками в нім є іони неодіма Nd3+, і лазер працює за так званою чотирьохрівневою схемою.
Кристали іттрій-алюмінієвого граната Y3Al5O12 : Nd3+ володіють винятковим набором властивостей, що робить їх вельми відповідним матеріалом для твердотілих лазерів. Вони прозорі в дуже широкій спектральній області (0,2-5 мкм), механічно міцні, володіють високою променевою стійкістю, а по теплопровідності поступаються трохи тільки корунду Al2O3, теплопровідність якого приблизно така ж, як у міді. Кристалічна структура іттрій-алюмінієвого граната (ІАГ) допускає введення значних концентрацій іонів Nd3+.
В даний час технологія вирощування монокристалів ІАГ добре розроблена. Лазер на ІАГ має низький поріг генерації. Таким чином, здавалося, що цей матеріал ідеально підходить для створення високоефективних лазерів. Проте з'ясувалося, що через так званого концентраційного гасіння люмінесценції він не може бути використаний для мініатюрних високоефективних лазерів.
Основною частиною лазера, як відомо, є активний елемент. У твердотільному лазері це кристалічний або скляний стрижень. Найбільш споживаними активними частинками впродовж 35 років є іони рідкоземельного елементу неодіма Nd3+ (Z = 60). Елекронная конфігурація цього іона така, що його енергетичний спектр, тобто сукупність енергій, якими може володіти цей іон, дозволяє здійснювати найбільш енергетично вигідну чотирьохрівневу схему роботи лазера.
Лазери, побудовані на кристалах з повним заміщенням іонів ітрію іонами неодіма, тобто на кристалах NdAl3(BO3) 4, мають низькі пороги генерації і високий ККД. Проте із-за дуже складної технології отримання цих кристалів лазери з ними не набули поширення.