
- •Введение
- •Содержание дисциплины лекции
- •Раздел 1. Основы моделирования
- •Раздел 2. Математическое моделирование
- •Раздел 3. Имитационное моделирование.
- •Раздел 4. Системы массового обслуживания и модели прогнозирования
- •Практические занятия
- •Самостоятельная работа
- •Рекомендуемый библиографический список
- •Саратовский государственный социально-экономический университет кафедра теоретических основ информатики и информационных технологий
- •Рабочая программа
- •Федеральное агентство по образованию
- •Саратовский государственный социально-экономический университет
- •Кафедра теоретических основ информатики
- •И информационных технологий
- •Рабочая программа
- •Учебно-методическая карта дисциплины Форма 1
- •3. Содержание учебной дисциплины
- •Раздел 1. Основы моделирования
- •Раздел 2. Математическое моделирование
- •Раздел 3. Имитационное моделирование.
- •Раздел 4. Системы массового обслуживания и модели прогнозирования
- •Практические занятия
- •Самостоятельная работа
- •1. Компьютерное моделирование как метод научного познания
- •Раздел 1. Основы моделирования
- •Этапы компьютерного моделирования
- •Модели. Разновидности моделирования.
- •Раздел 2. Математическое моделирование
- •Компьютерное математическое моделирование
- •Различные классификации математических моделей
- •1.Программирование математической модели.
- •2.Испытание модели
- •3.Исследование свойств имитационной модели.
- •4.Эксплуатация имитационной модели
- •5.Анализ результатов моделирования
- •1. Детерминированные модели
- •2. Моделирование свободного падения тела
- •3. Модель движения тела, брошенного под углом к горизонту
- •4. Уравнения матфизики
- •5. Классификация уравнений матфизики
- •6. Моделирование процесса теплопроводности
- •Экологические модели
- •Компьютерное моделирование в экологии
- •Модели внутривидовой конкуренции
- •Динамика численности популяций хищника и жертвы
- •Раздел 3. Имитационное моделирование
- •Имитационное моделирование
- •Игра "Жизнь"
- •Динамические модели популяций
- •1. Понятие случайных событий
- •2. Вычисление площадей методом Монте-Карло
- •3. Задача Бюффона
- •4. Модели случайных и хаотических блужданий
- •Раздел 4. Системы массового обслуживания и модели прогнозирования
- •Модели потоков
- •Модели потоков
- •6. Классификация потоков.
- •Марковские системы массового обслуживания
- •Сети систем массового обслуживания
- •1. Моделирование в системах массового обслуживания
- •2. Очередь к одному "продавцу"
- •Прочие методологии
- •Практические занятия
- •Тема 1. Этапы и цели компьютерного математического моделирования
- •Некоторые приемы программирования, используемые при моделировании
- •Основные этапы построения математических моделей. Типовые прикладные результаты решения задач математического моделирования Модель движения системы материальных точек
- •Математические системы. Реализация алгоритма для математических систем Методы численного интегрирования и дифференцирования
- •Динамические системы. Реализация алгоритма для механических систем Модель явлений переноса (теплопроводность, диффузия)
- •Тема 6,7. Динамические системы. Реализация алгоритма для экологических систем
- •Тема 8. Модели физических процессов. Модели радиоактивного распада и цепной реакции ядерного взрыва Моделирование систем с одной степенью свободы
- •Модель двумерного движения материальной точки
- •Модели биологических систем. Модель распространения эпидемий Моделирование автоволновых процессов
- •Моделирование распространения волны
- •Тема 10, Тема 11. Модели биологических систем. Динамики развития популяций Моделирование колебаний связанных осцилляторов
- •Метод Монте-Карло
- •Нахождение площадей методом Монте-Карло
- •6.1.Вычисление кратных интегралов методом Монте – Карло
- •Самостоятельная работа
- •Примеры решения задач
- •Решение задачи 8 методом Монте-Карло
- •И их натуральных логарифмов
- •Задания для самостоятельного решения к теме № 3
- •Задания для самостоятельного решения к теме № 4
- •Задания для самостоятельной работы к теме 5
- •Задания для самостоятельного решения к теме 7
- •Задания для самостоятельного решения к теме 8
- •Задания для самостоятельного решения
- •Задания для самостоятельной работы к теме 9
- •Задания для самостоятельного решения к теме 10-11
- •Компьютерное моделирование в экологии. Общие рекомендации
- •Задания к самостоятельной работе
- •Задание для самостоятельного решения к теме смо
- •Вопросы к зачету
Раздел 1. Основы моделирования
Основные понятия: модель, объект-оригинал. Этапы компьютерного моделирования: постановка задачи в реальных объектах; формализация и моделирование; разработка алгоритмов и программ; получение и анализ результатов работы на компьютере. Характеристика каждого этапа. Технология компьютерного моделирования.
В технологии компьютерного моделирования можно выделить следующие основные понятия.
Модель - искусственно созданный объект, который воспроизводит в определенном виде реальный объект - оригинал.
Компьютерная модель - представление информации о моделируемой системе средствами компьютера.
Система - совокупность взаимосвязанных элементов, обладающих свойствами, отличными от свойств отдельных элементов.
Элемент - это объект, обладающий свойствами, важными для целей моделирования. В компьютерной модели свойства элемента представляются величинами - характеристиками элемента.
Связь между элементами описывается с помощью величин и алгоритмов, в частности вычислительных формул.
Состояние системы представляется в компьютерной модели набором характеристик элементов и связей между элементами. Структура данных, описывающих состояние, не зависит от конкретного состояния и не меняется при смене состояний, меняется только значение характеристик.
Если состояния системы функционально зависят от некоторого параметра, то процессом называют набор состояний, соответствующий упорядоченному изменению параметра. Параметры в системе могут меняться как непрерывно, так и дискретно. В компьютерной модели изменение параметра всегда дискретно. Непрерывные процессы можно моделировать на компьютере, выбирая дискретную серию значений параметра так, чтобы последовательные состояния мало чем отличались друг от друга, или, другими словами, минимизируя шаг по времени.
В свете введенных определений можно дать более строгие определения некоторым классам моделей.
Статистические модели - модели, в которых предоставлена информация об одном состоянии системы.
Динамические модели - модели, в которых предоставлена информация о состояниях системы и процессах смены состояний. Оптимизационные, имитационные и вероятностные модели являются динамическими моделями.
В оптимизационных и имитационных моделях последовательность смены состояний соответствует изменению моделируемой системы во времени. В вероятностных моделях смена состояний определяется случайными величинами.
Этапы компьютерного моделирования
Этапы КМ можно представить в виде схемы
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
Моделирование начинается с объекта изучения. На 1 этапе формируются законы, управляющие исследованием, происходит отделение информации от реального объекта, формируется существенная информация, отбрасывается несущественная, происходит первый шаг абстракции. Преобразование информации определяется решаемой задачей. Информация, существенная для одной задачи, может оказаться несущественной для другой. Потеря существенной информации приводит к неверному решению или не позволяет вообще получить решение. Учет несущественной информации вызывает излишние сложности, а иногда создает непреодолимые препятствия на пути к решению. Переход от реального объекта к информации о нем осмыслен только тогда, когда поставлена задача. В тоже время постановка задачи уточняется по мере изучения объекта. Т.о. на 1 этапе параллельно идут процессы целенаправленного изучения объекта и уточнения задачи. Также на этом этапе информация об объекте подготавливается к обработке на компьютере. Строится так называемая формальная модель явления, которая содержит:
Набор постоянных величин, констант, которые характеризуют моделируемый объект в целом и его составные части; называемых статистическим или постоянными параметрами модели;
Набор переменных величин, меняя значение которых можно управлять поведением модели, называемых динамическим или управляющими параметрами;
Формулы и алгоритмы, связывающие величины в каждом из состояний моделируемого объекта;
Формулы и алгоритмы, описывающие процесс смены состояний моделируемого объекта.
На 2 этапе формальная модель реализуется на компьютере, выбираются подходящие программные средства для этого, строиться алгоритм решения проблемы, пишется программа, реализующая этот алгоритм, затем написанная программа отлаживается и тестируется на специально подготовленных тестовых моделях. Тестирование - это процесс исполнения программы с целью выявления ошибок. Подбор тестовой модели - это своего рода искусство, хотя для этого разработаны и успешно применяются некоторые основные принципы тестирования. Тестирование - это процесс деструктивный, поэтому считается, что тест удачный, если обнаружена ошибка. Проверить компьютерную модель на соответствие оригиналу, проверить насколько хорошо или плохо отражает модель основные свойства объекта, часто удается с помощью простых модельных примеров, когда результат моделирования известен заранее.
На 3 этапе, работая с компьютерной моделью, мы осуществляем непосредственно вычислительный эксперимент. Исследуем, как поведет себя наша модель в том или ином случае, при тех или иных наборах динамических параметров, пытаемся прогнозировать или оптимизировать что-либо в зависимости от поставленной задачи.
Результатом компьютерного эксперимента будет являться информационная модель явления, в виде графиков, зависимостей одних параметров от других, диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени и т.п.
Классификация моделей. Понятия: материальная модель (физическая, аналоговая), идеальная модель (интуитивная, математическая, символьная). Классификационные признаки. Взаимосвязь моделирования и техники.