
- •Б. Б. Желваков
- •Моделирование систем
- •Учебное пособие
- •Санкт-Петербург
- •Составитель
- •Подготовлено на кафедре
- •230201 – Информационные системы и технологии
- •1. Основные понятия теории моделирования систем 6
- •2. Классификация моделей и методов моделирования 21
- •3. Математические методы моделирования 35
- •4. Имитационное моделирование. 62
- •5. Моделирование организационных систем 116
- •6. Методика и стандарты функционального моделирования 140
- •7. Объектно-ориентированное моделирование 166
- •8. Моделирование бизнес-процессов 221
- •9. Моделирование систем с soa-архитектурой 226
- •10. Модели систем с «облачной» архитектурой 237
- •Введение
- •1. Основные понятия теории моделирования систем
- •1.1. Системный подход и понятие «система»
- •1.2. Системный анализ
- •1.3. Понятия «модель» и «моделирование»
- •1.4. Моделирование систем как процесс формирования знаний.
- •1.5. Моделирование больших и сложных систем.
- •2. Классификация моделей и методов моделирования
- •2.1. Основные типы системных моделей
- •2.2. Классификация методов моделирования сложных систем
- •3. Математические методы моделирования
- •3.1. Принципы и подходы к построению математических моделей
- •3.2. Этапы построения математической модели
- •3.3. Примеры математических моделей
- •3.3.1. Модель целенаправленной системы
- •3.3.2. Модель абстрактной системы с неопределённой структурой
- •3.3.3. Модель целенаправленной системы с управлением.
- •3.3.4. Модель оптимального планирования доставки товаров потребителям
- •3.3.5. Модель в контуре управления экономической системы
- •4. Имитационное моделирование.
- •4.1. Понятие имитационного моделирования
- •4.2. Автоматизация имитационного моделирования
- •4.3. Дискретно-событийное моделирование
- •4.3.1. Системы массового обслуживания
- •4.3.2. Механизмы продвижения времени
- •4.3.3. Обозначения смо-систем
- •4.3.4. Параметры систем массового обслуживания
- •4.3.5. Критерии оценки работы систем массового обслуживания
- •4.3.6. Компоненты дискретно-событийной имитационной модели и их программная организация
- •4.4 Этапы исследования системы с помощью имитационного моделирования
- •4.5. Преимущества, недостатки и ошибки имитационного моделирования
- •4.6. Моделирование по методу Монте-Карло
- •4.7. Программное обеспечение имитационного моделирования
- •4.7.1. Классификация программных средств имитационного моделирования
- •4.7.2. Общие элементы моделирования
- •4.7.3. Универсальные пакеты имитационного моделирования
- •4.7.4. Предметно-ориентированные пакеты имитационного моделирования
- •5. Моделирование организационных систем
- •5.1. Концепции и стандарты организационного моделирования
- •5.2. Метамоделирование
- •5.3. Метамодель общих хранилищ данных (cwm)
- •5.4. Моделирование организационных систем
- •6. Методика и стандарты функционального моделирования
- •6.1. Методика функционального моделирования sadt
- •6.2. Диаграммы «сущность-связь»
- •6.3.Стандарты idef
- •6.3. Система моделирования бизнес-процессов AllFusion Process Modeler
- •7. Объектно-ориентированное моделирование
- •7.1. Принципы и методология объектно-ориентированного подхода.
- •7.2. Унифицированный язык моделирования uml
- •7.2.1. Архитектура uml
- •7.2.2. Диаграммы uml
- •7.2.3. Использование uml при моделировании систем реального времени
- •7.2.4. Преимущества uml
- •7.2.5. Унифицированный Процесс разработки по компании Rational
- •7.3. Архитектура, управляемая моделями
- •7.4. Разработка, управляемая моделями (mdd)
- •7.5. Объектно-ориентированное программирование
- •7.6 Инструментальные средства поддержки оо‑технологий
- •8. Моделирование бизнес-процессов
- •9. Моделирование систем с soa-архитектурой
- •9.1. Композитная структура программ
- •9.2. Концепция soa
- •9.3. Сервис-ориентированное моделирование
- •10. Модели систем с «облачной» архитектурой
- •Заключение
- •Литература
4.1. Понятие имитационного моделирования
Понятие имитационного моделирования возникло при исследовании систем со случайными воздействиями и процессами, такими как системы массового обслуживания (СМО), [6]. Для таких систем: в 60-х годах стали моделировать на ЭВМ пошаговое протекание процессов во времени с вводом в нужный момент случайных воздействий. При этом однократное воспроизведение хода такого процесса в системе мало что давало. Но многократное повторение с разными воздействиями уже неплохо ориентировало исследователя в общей картине, позволяло делать выводы и давать рекомендации по улучшению системы, опираясь на методы статистического анализа результатов таких экспериментов.
В имитационном моделировании различают метод статистических испытаний (Монте-Карло) и метод статистического моделирования.
Метод Монте-Карло - численный метод, который применяется для моделирования случайных величин и функций, вероятностные характеристики которых (например, математические ожидания, МО) совпадают с решениями аналитических задач. Он состоит в многократном воспроизведении процессов, являющихся реализациями случайных величин и функций, с последующей обработкой информации методами математической статистики.
Если методика Монте-Карло применяется для машинной имитации в целях исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, то такой метод называется методом статистического моделирования.
Имитационное моделирование может быть положено в основу структурного, алгоритмического и параметрического синтеза систем, когда требуется создать систему с заданными характеристиками при определенных ограничениях.
С помощью общих или специализированных программ имитационного моделирования создаётся компьютерная модель реального или предполагаемого процесса, на которой проводится ряд экспериментов с целью описания наблюдаемых результатов и/или предсказания будущих результатов выполнения данного процесса. Имитационное моделирование позволяет строить модели, учитывающие время выполнения процессов (функций). Полученную модель можно “проиграть” во времени и получить статистику получаемых результатов так, как это было бы в реальности.
В имитационной модели изменения процессов и данных ассоциируются с событиями. “Проигрывание” модели заключается в последовательном переходе от одного события к другому. Обычно имитационные модели строятся для поиска оптимального решения в условиях ограничения по ресурсам, когда другие математические модели оказываются слишком сложными.
Замена реального эксперимента имитационным моделированием позволяет сократить затраты, необходимые для проведения исследований. Кроме того, в некоторых ситуациях эксперименты на реальных системах могут оказаться чрезвычайно опасными или невозможными.
Имитационные эксперименты позволяют:
Исследовать поведения системы, т.е. получить представление о возможных границах или типах её поведенческих процессов
Оценить влияние на систему различных управляющих или случайных воздействий, изменений в структуре системы и протекающих в ней процессов
определить влияние входных данных и других факторов на критерии оценки функционирования системы
Имитационное моделирование может применяться в самых различных сферах деятельности. Ниже приведен список задач, при решении которых моделирование особенно эффективно:
проектирование и анализ производственных систем;
оценка различных систем вооружений и требований к их материально-техническому обеспечению;
определение требований к оборудованию и протоколам сетей связи;
определение требований к оборудованию и программному обеспечению различных компьютерных систем;
проектирование и анализ работы транспортных систем, например аэропортов, автомагистралей, портов и метрополитена;
оценка проектов создания различных организаций массового обслуживания, например центров обработки заказов, заведений быстрого питания, больниц, отделений связи;
модернизация различных процессов в деловой сфере;
определение политики в системах управления запасами;
анализ финансовых и экономических систем.
Имитационное моделирование — один из наиболее распространенных методов, а возможно, и самый распространенный метод, исследования операций и теории управления.
В качестве основания для классификации имитационных моделей можно использовать тип моделируемых систем. В соответствии с этим различают следующие виды имитационных моделей.
Статическая, динамическая. Статическая имитационная модель — это система в определенный момент времени или же система, в которой время просто не играет никакой роли. Примерами статической имитационной модели являются модели, созданные по методу Монте-Карло. Динамическая имитационная модель представляет систему, меняющуюся во времени, например конвейерную систему на заводе. Построив такую модель, следует решить, каким образом ее можно использовать для получения данных о системе, которую она представляет.
Детерминированная, стохастическая. Если имитационная модель не содержит вероятностных (случайных) компонентов, она называется детерминированной. Примером такой модели является сложная (и аналитически сложно вычислимая) система дифференциально-разностных уравнений, описывающих химическую реакцию. В детерминированной модели результат можно получить, когда для нее заданы все входные величины и зависимости, даже если в этом случае потребуется большое количество компьютерного времени. Однако многие системы моделируются с несколькими случайными входными данными их компонентов, в результате чего создается стохастическая имитационная модель. Большинство систем массового обслуживания и управления запасами именно таким образом и моделируется. Стохастические имитационные модели выдают результат, который является случайным сам по себе, и поэтому он может рассматриваться лишь как оценка истинных характеристик модели. Это один из главных недостатков этого вида моделирования
Непрерывная, дискретная. Говоря обобщенно, мы определяем дискретную и непрерывную модели подобно дискретной и непрерывной системам ‑ через множество их состояний. Следует заметить, что дискретная модель не всегда используется для моделирования дискретной системы, и наоборот. Необходимо ли для конкретной системы использовать дискретную или непрерывную модель, зависит от задач исследования. Так, модель транспортного потока на автомагистрали будет дискретной, если вам необходимо учесть характеристики и движение отдельных машин. Однако, если машины можно рассматривать в совокупности, транспортный поток может быть описан с помощью дифференциальных уравнений, т.е. непрерывной модели.
Дискретные, динамические и стохастические имитационные модели принято называть дискретно-событийными имитационными моделями.