Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика ЭКЗАМЕН.docx
Скачиваний:
59
Добавлен:
15.04.2019
Размер:
1.76 Mб
Скачать

Гравитационное взаимодействие

В классической физике гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, и его величина определяется гравитационной массой тела[13], которая с высокой степенью точности равна по величине инертной массе, о которой шла речь выше, что позволяет говорить о просто массе тела.

В релятивистской физике гравитация подчиняется законам общей теории относительности, в основе которой лежит принцип эквивалентности, заключающийся в неотличимости явлений, происходящих локально в гравитационном поле, от аналогичных явлений в неинерциальной системе отсчёта, движущейся с ускорением, равным ускорению свободного падения в гравитационном поле. Можно показать, что данный принцип эквивалентен утверждению о равенстве инертной и гравитационной масс[15].

В общей теории относительности энергия играет ту же роль, что и гравитационная масса в классической теории. Действительно, величина гравитационного взаимодействия в этой теории определяется так называемым тензором энергии-импульса, являющимся обобщением понятия энергии.

В простейшем случае точечной частицы в центрально-симметричном гравитационном поле объекта, масса которого много больше массы частицы, сила, действующая на частицу, определяется выражением:

где G — гравитационная постоянная, M — масса тяжёлого объекта, E — полная энергия частицы, β = v / c, v — скорость частицы,  — радиус-вектор, проведённый из центра тяжёлого объекта в точку нахождения частицы. Из этого выражения видна главная особенность гравитационного взаимодействия в релятивистском случае по сравнению с классической физикой: оно зависит не только от массы частицы, но и от величины и направления её скорости. Последнее обстоятельство, в частности, не позволяет ввести однозначным образом некую эффективную гравитационную релятивистскую массу, сводившую бы закон тяготения к классическому виду.

Предельный случай безмассовой частицы

Важным предельным случаем является случай частицы, масса которой равна нулю. Примером такой частицы является фотон — частица-переносчик электромагнитного взаимодействия. Из приведённых выше формул следует, что для такой частицы справедливы следующие соотношения:

Таким образом, частица с нулевой массой вне зависимости от своей энергии всегда двигается со скоростью света. Для безмассовых частиц введение понятия «релятивистской массы» в особой степени не имеет смысла, поскольку, например, при наличии силы в продольном направлении скорость частицы постоянна, а ускорение, следовательно, равно нулю, что требует бесконечной по величине эффективной массы тела. В то же время, наличие поперечной силы приводит к изменению направления скорости, и, следовательно, «поперечная масса» фотона имеет конечную величину.

Аналогично бессмысленно для фотона вводить эффективную гравитационную массу. В случае центрально-симметричного поля, рассмотренного выше, для фотона, падающего вертикально вниз, она будет равна E / c2, а для фотона, летящего перпендикулярно направлению на гравитационный центр, — 2E / c2.

Количественные соотношения между массой и энергией

В международной системе единиц СИ отношение энергии и массы E / m выражается в джоулях на килограмм, и оно численно равно квадрату значения скорости света c в метрах в секунду):

E / m = c² = (299 792 458 м/с)² = 89 875 517 873 681 764 Дж/кг (≈9,0×1016 джоулей на килограмм).

Таким образом, 1 грамм массы эквивалентен следующим значениям энергии:

  • 89,9 тераджоулей (89,9 ТДж)

  • 25,0 миллионов киловатт-часов (25 ГВт·ч),

  • 21,5 миллиардов килокалорий (≈21 Ткал),

  • 21,5 килотонн в тротиловом эквиваленте (≈21 кт).

В ядерной физике часто применяется значение отношения энергии и массы, выраженное в мегаэлектронвольтах на атомную единицу массы — ≈931,494 МэВ/а.е.м.