Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика ЭКЗАМЕН.docx
Скачиваний:
59
Добавлен:
15.04.2019
Размер:
1.76 Mб
Скачать

Вывод преобразований

Преобразования Лоренца могут быть получены абстрактно, из групповых соображений (в этом случае они получаются с неопределённым c), как обобщение преобразований Галилея (что было проделано Пуанкаре — см. ниже). Однако впервые они были получены как преобразования, относительно которых ковариантны уравнения Максвелла (то есть по сути — которые не меняют вида законов электродинамики и оптики при переходе к другой системе отсчёта). Могут также быть получены из предположения линейности преобразований и постулата одинаковости скорости света во всех системах отсчёта (являющегося упрощённой формулировкой требования ковариантности электродинамики относительно искомых преобразований, и распространением принципа равноправия инерциальных систем отсчёта — принципа относительности — на электродинамику), как это делается в специальной теории относительности (СТО) (при этом c в преобразованиях Лоренца получается определённым и совпадает со скоростью света).

Надо заметить, что если не ограничивать класс преобразований координат линейными, то первый закон Ньютона выполняется не только для преобразований Лоренца, а для более широкого класса дробно-линейных преобразований [3] (однако этот более широкий класс преобразований — за исключением, конечно, частного случая преобразований Лоренца — не сохраняет метрику постоянной).

Разные формы записи преобразований Вид преобразований при произвольной ориентации осей

В силу произвольности введения осей координат, многие задачи можно свести к указанному случаю. Если же задача требует иного расположения осей, то можно воспользоваться формулами преобразований в более общем случае. Для этого радиус-вектор точки

,

где  — орты, надо разбить на составляющую параллельную скорости и составляющую ей перпендикулярную

.

Тогда преобразования получат вид

,

где  — абсолютная величина скорости,  — абсолютная величина продольной составляющей радиус-вектора.

Эти формулы для случая параллельных осей, но с произвольно направленной скоростью, можно преобразовать к виду, впервые полученному Герглоцем:

.

Обратите внимание, что самый общий случай, когда начала координат не совпадают в нулевой момент времени, здесь не приведён с целью экономии места. Его можно получить, добавив к преобразованиям Лоренца трансляцию (смещение начала координат).

Преобразования Лоренца в матричном виде

Для случая коллинеарных осей преобразования Лоренца записываются в виде

,

где .

При произвольной ориентации осей, в форме 4-векторов это преобразование записывается как:

где E — единичная матрица 3 3, тензорное умножение трехмерных векторов.

Надо иметь в виду, что в литературе матрица преобразований Лоренца часто записывается для упрощения в системе единиц, где c = 1.

Произвольное однородное преобразование Лоренца можно представить как некоторую композицию вращений пространства и элементарных преобразований Лоренца, затрагивающих только время и одну из координат. Это следует из алгебраической теоремы о разложении произвольного вращения на простые.

Свойства преобразований Лоренца

  • Можно заметить, что в случае, когда , преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последее объясняет, каким образом сочетаются эти две теории — первая является обобщением и уточнением второй, а вторая — предельным случаем первой, оставаясь в этом качестве верной приближенно (с некоторой точностью, на практике часто очень и очень большой) при достаточно малых (по сравнению со скоростью света) скоростях движений.

  • Преобразования Лоренца сохраняют инвариантным интервал для любой пары событий (точек пространства-времени) — то есть любой пары точек пространства-времени Минковского: Убедиться в этом нетрудно, например, проверив явно то, что матрица преобразования Лоренца L ортогональна в смысле метрики Минковского определяемой таким выражением, то есть . Это проще всего проделать для буста, а для трехмерных вращений это очевидно из определения декартовых координат, кроме того, сдвиги начала отсчёта не меняют разностей координат. Следовательно, это свойство верно и для любых композиций бустов, вращений и сдвигов, что и составляет полную группу Пуанкаре; как только мы узнали, что преобразования координат ортогональны, из этого сразу следует, что формула для расстояния остаётся неизменной при переходе к новой системе координат — по определению ортогональных преобразований.

  • В частности, инвариантность интервала имеет место и для случая s = 0, а значит — гиперповерхность в пространстве-времени, которая определяется равенством нулю интервала до заданной точки — световой конус — является неподвижной при преобразованиях Лоренца (что является проявлением инвариантности скорости света). Внутреность двух полостей конуса соответствует времениподобным — вещественным — интервалам от их точек до вершины, внешняя область — пространственноподобным — чисто мнимым (в принятой в этой статье сигнатуре интервала).

  • Другие инвариантные гиперповерхности однородных преобразований Лоренца (аналоги сферы для пространства Минковского) — гиперболоиды: двуполостный гиперболоид для времениподобных интервалов относительно начала координат, и однополостный — для пространственноподобных интервалов.

  • Матрицу преобразования Лоренца при коллинеарных пространственных осях (в системе единиц c=1) можно представить как:

где . В этом легко убедиться, учитывая и проверив выполнение соответствующего тождества для матрицы преобразования Лоренца в обычном виде.

  • Если принять введённые Минковским обозначения , то преобразование Лоренца для такого пространства сводится к повороту на мнимый угол в плоскости, включающей ось (для случая движения вдоль оси — в плоскости x0x1). Это очевидно, исходя из подстановки в матрицу, приведенную чуть выше — и её небольшого изменения для того, чтобы учесть вводимую мнимость временной координаты — и сравнении её с обычной матрицей вращения.