
- •Корпускулярно-волновой дуализм микрообъектов
- •Элементы квантовой механики
- •Квантовая теория свободных электронов в металле
- •Введение в теорию твердых тел
- •Основы физики лазеров
- •Элементы физики ядра и элементарных частиц
- •§ 1. Краткие исторические сведения
- •§ 2. Тепловое излучение
- •§ 3. Излучение абсолютно черного тела. Закон Кирхгофа.
- •Итоги лекции n 1
- •Лекция n 2 Проблема излучения абсолютно черного тела. Формула Планка. Закон Стефана-Больцмана, закон Вина § 1. Проблема излучения абсолютно черного тела. Формула Планка
- •§ 2. Закон Стефана-Больцмана и закон Вина
- •Итоги лекции n 2
- •Лекция n 3 Проблема фотоэффекта. Уравнение Эйнштейна для фотоэффекта § 1. Проблема фотоэффекта
- •§ 2. Уравнение Эйнштейна для фотоэффекта
- •Итоги лекции n 3
- •Лекция n 4 Боровская теория атома водорода Спектр излучения атома водорода в теории Бора § 1. Боровская теория атома водорода
- •Первый постулат Бора:
- •Второй постулат Бора:
- •§ 2. Спектры излучения атома водорода в теории Бора
- •Итоги лекции n 4
- •Корпускулярно-волновой дуализм микрообъектов
- •Лекция n 5 Свойства фотонов. Вероятностная интерпретация плотности энергии и интенсивности электромагнитной волны
- •§ 1. Свойства фотонов
- •2. Масса фотона
- •3. Энергия фотона
- •§ 2. Неделимость фотона
- •§ 3. Интерференция одиночных фотонов
- •§ 4. Вероятностная интерпретация плотности энергии и интенсивности электромагнитной волны
- •Итоги лекции n 5
- •§ 1. Гипотеза де Бройля. Волновые свойства электронов
- •Лекция n 6 § 2. Дифракция одиночных электронов
- •§ 3. Волновая функция и волна де Бройля
- •§ 4. Соотношения неопределенностей
- •Итоги лекции n 6
- •§ 2. Понятия об операторах физических величин
- •§ 3. Решение уравнения Шредингера для простейших случаев: свободная частица и частица в бесконечно глубокой одномерной потенциальной яме
- •§ 2. Квантовые числа
- •§ 3. Спектры атома водорода в теории Шредингера
- •§ 4. Волновая функция основного состояния атома водорода
- •Итоги лекции n 8
- •§ 2. Физические основы периодической системы элементов д. И. Менделеева
- •§ 3. Молекула
- •§ 4. Объяснение температурной зависимости теплоемкостей газов
- •Итоги лекции n 9
- •§ 1. Электронный газ в модели одномерной бесконечно глубокой ямы
- •§ 2. Электронный газ в модели бесконечно глубокой трехмерной потенциальной ямы
- •Итоги лекции n 10
- •Элементы квантовой статистики
- •Лекция n 11
- •§2. Анализ функции f(e)
- •Итоги лекции n 11
- •Лекция n 12 Результаты квантовой теории электропроводности. Термоэлектронная эмиссия. Бозоны. Распределение Бозе-Эйнштейна § 1. Результаты квантовой теории электропроводности металла
- •§ 2. Термоэлектронная эмиссия
- •§ 3. Бозоны. Распределение Бозе-Эйнштейна
- •Итоги лекции n 12
- •§ 2. Диэлектрики и полупроводники
- •§ 3. Собственная проводимость полупроводников
- •§ 2. Акцепторные примеси. Полупроводники p-типа
- •§ 3. Электронно-дырочный переход. Полупроводниковый диод
- •§ 4. Полупроводниковый триод - транзистор
- •Основы физики лазеров лекция n 15
- •§ 1. Вводные сведения
- •§ 2. Вынужденное (стимулированное) излучение
- •§ 3. Состояние с инверсией населенности
- •§ 4. Оптический резонатор
- •§ 5. Способы создания инверсии населенности
- •§ 6. Виды лазеров и их применение
- •§ 2. Дефект массы и энергия связи атомного ядра. Ядерные силы
- •§ 1. Некоторые сведения из истории открытия деления ядра урана
- •§ 2. Цепная ядерная реакция. Ядерная бомба
- •§ 3. Ядерный реактор
- •§ 4. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •Итоги лекции n 17
- •§ 1. Радиоактивность. Историческое введение
- •§ 2. Закон радиоактивного распада
- •§ 3. Взаимодействие радиоактивного излучения с веществом
- •§ 4. Методы регистрации ионизирующих излучений
- •Итоги лекции n 18
§ 2. Уравнение Эйнштейна для фотоэффекта
Согласно предположению Эйнштейна свет состоит из неделимых квантов энергии величиной hv. Это предположение позволило ему очень просто разрешить проблему фотоэффекта. Применим к фотоэффекту закон сохранения энергии, считая свет потоком фотонов с энергией
В металле электрон находится в потенциальной яме. Для того, чтобы удалить электрон из металла, надо совершить работу против сил электростатического притяжения отрицательного электрона к положительному ионному остатку. Эта работа А называется работой выхода электрона из металла. Будем пока считать, что глубина потенциальной ямы равна этой работе А, впоследствии (см. рис. 12.1 и формулу (12.4)) мы внесем некоторые уточнения. Для разных металлов величина А разная. Меньше всего величина работы выхода у щелочных металлов, например, для цезия (Cs) А = 1,81 эВ. У цинка, который использовался в опытах Столетова, А = 4,24 эВ. Фотоны поглощаются поодиночке (если интенсивность света не достигает очень больших значений). Энергия фотона hv частично расходуется на работу выхода, оставшаяся часть (mv2max)/2 уносится электроном, (см. рисунок 3.4).
Рис 3.4
Таким образом
Это и есть уравнение Эйнштейна для фотоэффекта. Если в этом уравнении заменить (mv2max)/2 на еUзад (см. (3.1)), то уравнение Эйнштейна будет иметь следующий вид:
Из последней формулы видно, что величина задерживающего напряжения Uзад прямо пропорциональна частоте света. Эту зависимость тщательно проверял в специально созданной установке американский физик Р. Милликен. "Я потратил десять лет моей жизни на проверку этого эйнштейновского уравнения 1905 г., - писал Милликен, - и вопреки всем моим ожиданиям я вынужден был в 1915 г. безоговорочно признать, что оно экспериментально подтверждено, несмотря на его несуразность, так как казалось, что оно противоречит всему, что мы знаем об интерференции света ". Последняя часть высказывания Р. Милликена связана с корпускулярно-волновым дуализмом микрочастиц, о котором мы поговорим позднее в лекциях N 5 и N 6.
Из уравнения Эйнштейна для фотоэффекта (3.3) следует, что если энергия фотона hv меньше работы выхода А, то фотоэффект невозможен. Граничная частота определяется равенством:
здесь vкр - красная граница фотоэффекта.
Соответствующая частоте vкр длина волны также называется красной границей фотоэффекта, т.к. v = c/λ , то для λкр имеем:
Название "красная граница" связано с тем, что длинноволновая часть видимого спектра, для которой максимальна длина волны λ и минимальна энергия фотонов, имеет красный цвет.
Итоги лекции n 3
-
Фотоэффект - это испускание электронов веществом под действием электромагнитного излучения.
-
Экспериментальные исследования фотоэффекта, приведенного в 1900-1904 гг., показали, что
1) энергия вылетевших из фотокатода электронов не зависит от интенсивности света;
2) эта энергия прямо пропорциональна частоте v света, освещающего фотокатод.
-
Проблема фотоэффекта состояла в том, что теоретические предсказания, сделанные для фотоэффекта на основе электродинамики Максвелла, противоречили результатам опытов. Теория Максвелла предсказывала, что энергия, передаваемая световой волной электрону, должна быть пропорциональна интенсивности света. Кроме того, в классической электродинамике нет никаких объяснений прямой пропорциональности кинетической энергии электронов (mv2max)/2 частоте света v.
-
Проблема фотоэффекта была разрешена в 1905 г. А. Эйнштейном, который предположил, что свет состоит из потока фотонов с энергией (см. (3.2)):
.
-
Применив к процессу поглощения фотона закон сохранения энергии, Эйнштейн получил следующее уравнение для фотоэффекта (см. (3.3)):
здесь А - работа выхода электрона из вещества, m - масса электрона, vmax - его скорость в момент вылета из фотокатода.
-
Из уравнения Эйнштейна для фотоэффекта следует, что, если энергия фототока hv меньше работы выхода А, то фотоэффект невозможен. Граничная частота называется красной границей фотоэффекта и определяется равенством (см. (3.5)):