
- •Корпускулярно-волновой дуализм микрообъектов
- •Элементы квантовой механики
- •Квантовая теория свободных электронов в металле
- •Введение в теорию твердых тел
- •Основы физики лазеров
- •Элементы физики ядра и элементарных частиц
- •§ 1. Краткие исторические сведения
- •§ 2. Тепловое излучение
- •§ 3. Излучение абсолютно черного тела. Закон Кирхгофа.
- •Итоги лекции n 1
- •Лекция n 2 Проблема излучения абсолютно черного тела. Формула Планка. Закон Стефана-Больцмана, закон Вина § 1. Проблема излучения абсолютно черного тела. Формула Планка
- •§ 2. Закон Стефана-Больцмана и закон Вина
- •Итоги лекции n 2
- •Лекция n 3 Проблема фотоэффекта. Уравнение Эйнштейна для фотоэффекта § 1. Проблема фотоэффекта
- •§ 2. Уравнение Эйнштейна для фотоэффекта
- •Итоги лекции n 3
- •Лекция n 4 Боровская теория атома водорода Спектр излучения атома водорода в теории Бора § 1. Боровская теория атома водорода
- •Первый постулат Бора:
- •Второй постулат Бора:
- •§ 2. Спектры излучения атома водорода в теории Бора
- •Итоги лекции n 4
- •Корпускулярно-волновой дуализм микрообъектов
- •Лекция n 5 Свойства фотонов. Вероятностная интерпретация плотности энергии и интенсивности электромагнитной волны
- •§ 1. Свойства фотонов
- •2. Масса фотона
- •3. Энергия фотона
- •§ 2. Неделимость фотона
- •§ 3. Интерференция одиночных фотонов
- •§ 4. Вероятностная интерпретация плотности энергии и интенсивности электромагнитной волны
- •Итоги лекции n 5
- •§ 1. Гипотеза де Бройля. Волновые свойства электронов
- •Лекция n 6 § 2. Дифракция одиночных электронов
- •§ 3. Волновая функция и волна де Бройля
- •§ 4. Соотношения неопределенностей
- •Итоги лекции n 6
- •§ 2. Понятия об операторах физических величин
- •§ 3. Решение уравнения Шредингера для простейших случаев: свободная частица и частица в бесконечно глубокой одномерной потенциальной яме
- •§ 2. Квантовые числа
- •§ 3. Спектры атома водорода в теории Шредингера
- •§ 4. Волновая функция основного состояния атома водорода
- •Итоги лекции n 8
- •§ 2. Физические основы периодической системы элементов д. И. Менделеева
- •§ 3. Молекула
- •§ 4. Объяснение температурной зависимости теплоемкостей газов
- •Итоги лекции n 9
- •§ 1. Электронный газ в модели одномерной бесконечно глубокой ямы
- •§ 2. Электронный газ в модели бесконечно глубокой трехмерной потенциальной ямы
- •Итоги лекции n 10
- •Элементы квантовой статистики
- •Лекция n 11
- •§2. Анализ функции f(e)
- •Итоги лекции n 11
- •Лекция n 12 Результаты квантовой теории электропроводности. Термоэлектронная эмиссия. Бозоны. Распределение Бозе-Эйнштейна § 1. Результаты квантовой теории электропроводности металла
- •§ 2. Термоэлектронная эмиссия
- •§ 3. Бозоны. Распределение Бозе-Эйнштейна
- •Итоги лекции n 12
- •§ 2. Диэлектрики и полупроводники
- •§ 3. Собственная проводимость полупроводников
- •§ 2. Акцепторные примеси. Полупроводники p-типа
- •§ 3. Электронно-дырочный переход. Полупроводниковый диод
- •§ 4. Полупроводниковый триод - транзистор
- •Основы физики лазеров лекция n 15
- •§ 1. Вводные сведения
- •§ 2. Вынужденное (стимулированное) излучение
- •§ 3. Состояние с инверсией населенности
- •§ 4. Оптический резонатор
- •§ 5. Способы создания инверсии населенности
- •§ 6. Виды лазеров и их применение
- •§ 2. Дефект массы и энергия связи атомного ядра. Ядерные силы
- •§ 1. Некоторые сведения из истории открытия деления ядра урана
- •§ 2. Цепная ядерная реакция. Ядерная бомба
- •§ 3. Ядерный реактор
- •§ 4. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •Итоги лекции n 17
- •§ 1. Радиоактивность. Историческое введение
- •§ 2. Закон радиоактивного распада
- •§ 3. Взаимодействие радиоактивного излучения с веществом
- •§ 4. Методы регистрации ионизирующих излучений
- •Итоги лекции n 18
§ 3. Излучение абсолютно черного тела. Закон Кирхгофа.
Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех частот или длин волн и для любой температуры, т.е.:
Из определения абсолютно черного тела следует, что оно должно поглощать все падающее на него излучение.
Понятие "абсолютно черное тело" - это модельное понятие. В природе абсолютно черных тел не существует, но можно создать устройство, являющееся хорошим приближением к абсолютно черному телу - модель абсолютно черного тела.
Модель абсолютно черного тела - это замкнутая полость с маленьким, по сравнению с ее размерами, отверстием (рис. 1.2). Полость изготавливают из материала, достаточно хорошо поглощающего излучение. Излучение, попавшее в отверстие, прежде чем выйти из отверстия, многократно отражается от внутренней поверхности полости.
При каждом отражении часть энергии поглощается, в результате из отверстия выходит отраженный поток dФ", являющийся очень малой частью попавшего в него потока излучения dФ. В результате поглощательная способность отверстия в полости будет близка к единице.
Рис. 1.2
Если внутренние стенки полости поддерживать при температуре Т, то из отверстия будет выходить излучение, свойства которого будут очень близки к свойствам излучения абсолютно черного тела. Внутри полости это излучение будет находиться в термодинамическом равновесии с веществом полости.
По определению плотности энергии, объемная плотность энергии w(Т) равновесного излучения в полости - это:
где dЕ - энергия излучения в объеме dV. Спектральное распределение объемной плотности дается функциями u(λ,T) (или u(ω,T)), которые вводятся аналогично спектральной плотности энергетической светимости ((1.6) и (1.9)), т.е.:
Здесь dwλ и dwω - объемная плотность энергии в соответствующем интервале длин волн dλ или частот dω.
Закон Кирхгофа утверждает, что отношение испускательной способности тела ((1.6) и (1.9)) к его поглощательной способности (1.14) одинаково для всех тел и является универсальной функцией частоты ω (или длины волны λ) и температуры Т, т.е.:
Очевидно, что поглощательная способность aω (или aλ) для разных тел разная, то из закона Кирхгофа следует, что чем сильнее тело поглощает излучение, тем сильнее оно должно это излучение испускать. Так как для абсолютного черного тела aω ≡ 1 (или aλ ≡ 1), то отсюда следует, что в случае абсолютно черного тела:
Иными словами, f(ω,T) либо φ(λ,T), есть не что иное как, спектральная плотность энергетической светимости (или испускательная способность) абсолютно черного тела.
Функция φ(λ,T) и f(ω,T) связаны со спектральной плотностью энергии излучения абсолютно черного тела следующими соотношениями:
где c - скорость света в вакууме.
Схема установки для опытного определения зависимости φ(λ,T) приведена на рисунке 1.3.
Рис. 1.3
Излучение испускается из отверстия замкнутой полости, нагретой до температуры Т, затем попадает на спектральный прибор (призменный или решеточный монохроматор), который выделяет излучение в интервале частот от λ до λ + dλ. Это излучение попадает на приемник, который позволяет измерить падающую на него мощность излучения. Поделив эту приходящуюся на интервал от λ до λ + dλ мощность на площадь излучателя (площадь отверстия в полости!), мы получим значение функции φ(λ,T) для данной длины волны λ и температуры Т. Полученные экспериментальные результаты воспроизведены на рисунке 1.4.
Рис. 1.4