Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Optika(1).doc
Скачиваний:
84
Добавлен:
20.12.2018
Размер:
2.76 Mб
Скачать

17.3.2. Фокусы линзы, фокальная плоскость

Буквой F обозначены фокусы линзы - точки, в которых собираются параллельные оптической оси лучи, прошедшие через линзу (или их продолжения).

17.3.3. Фокусное расстояние тонкой линзы

Буквой F обозначают также и фокусное расстояние линзы - расстояние от фокуса до оптического центра линзы.

Для сферической тонкой линзы на основе закона преломления получается следующая формула для фокусного расстояния:

.

Здесь nл и nср - показатели преломления линзы и среды, соответственно. R1 и R2 - радиусы кривизны линзы, они - величины алгебраические.

Эта формула справедлива только для приосевых (параксиальных) лучей.

R1, R2 - радиусы кривизны сферических поверхностей линзы могут быть положительными и отрицательными. Радиус кривизны выпуклой поверхности линзы считается положительным, вогнутый - отрицательным.

Выбор знаков R1 и R2 в приведенной нами формуле для F иллюстрируют следующие рисунки [Следует отметить, что существует и другое, более формальное правило знаков.]):

Для собирающей линзы фокусное расстояние F положительно, для рассеивающей - отрицательно. Оптической силы линзы называют величину Ф, обратную фокусному расстоянию линзы:

,

Единица оптической силы - диоптрия (дтпр).

.

17.3.4. Построение изображения в линзах

Для построения изображения предмета необходимо построить изображение каждой его точки.

Для построения изображения точки достаточно найти точки пересечение двух любых лучей идущих из заданной точки.

Удобнее всего использовать в качестве одного из этих лучей луч, идущий через оптический центр, он идет через линзу не отклоняясь:

Другой удобный луч - идущий параллельно оптической оси. Он, преломляясь в линзе, проходит через фокус, если линза собирающая:

Если линза рассеивающая, то через фокус проходит продолжение луча:

И, если луч шел через фокус собирающей линзы, то после преломления он пойдет параллельно оптической оси:

Для рассеивающей линзы параллельно оптической оси пойдет после преломления луч, продолжение которого проходит через фокус:

17.3.4.1. Примеры построения изображения точки в собирающей линзе

17.3.4.2. Пример построения изображения точки в рассеивающей линзе

17.3.5. Формула линзы

ΔABO подобен ΔA'B'O, значит:

.

ΔOCF подобен ΔA'B'F, значит:

, следовательно:    ,

освободимся от знаменателя:

,

поделим на df F, тогда:

,

или

,

откуда следует формула тонкой линзы:

.

Здесь d, f, F - алгебраические величины.

18. Интерференция света

Интерференция (от лат. Inter - взаимно, ferio - ударяю) - взаимное усиление или ослабление двух (или большего числа) волн при их наложении друг на друга при одновременном распространении в пространстве.

Интерференция - это одно из основных свойств волн любой природы: упругих (15), электромагнитных (16), в том числе и световых (16.5).

18.1. Интерференция от двух монохроматических источников одинаковой частоты

Изобразим два точечных источника S1 и S2, излучающих монохроматические световые волны одинаковой частоты ω. Проанализируем, от чего зависит интенсивность света в точке пространства, удаленной от первого источника на расстояние r1, а от второго - на r2.

Пусть векторы E1 и E2 обеих световых волн колеблются в одной плоскости, тогда:

Т.к. r1= const, r2= const, то в точке наблюдения каждая световая волна см. (16.1.2.2) возбуждает свое гармоническое колебание:

Амплитуда результирующего колебания при сложении колебаний одинаковой частоты и одинакового направления была найдена в (14.3.2):

.

Интенсивность найдем, усреднив это выражение по времени:

,

Здесь - разность фаз колебаний, возбуждаемых в точке наблюдения источником S1 и S2.

 

18.1.1. Некогерентные волны

Если <Cosδ> = 0, то I = I1 + I2- интенсивности складываются.

Такая ситуация наблюдается, если S1 и S2 - независимые источники, для них α1 и α2 у разных цугов (16.5.5) разные, длительность цуга ~ 10-8 с. При усреднении по промежутку времени ~ 10-1 с (время, характеризующее инерционность человеческого глаза) <Cosδ> = 0. Такие волны называют некогерентными.

 

 

18.1.2. Когерентные волны

Когерентные световые волны получают, разделив волну от одного источника на две. Эти две части одной волны уже будут когерентны ( α1 = α2, в пределах каждого цуга).

Тогда <Cosδ> = Cosδ = const, при фиксированных r1 и r2, следовательно:

.

 

18.1.2.1. Условия максимума и минимума на разность фаз δ

 

18.1.2.2. Оптическая разность хода

Пусть для простоты, начальные фазы α1 и α2 интерферирующих волн равны нулю, тогда:

здесь λ0 = cT - длина световой волны в вакууме.

Оптической разностью хода называют величину:

.

Тогда:

.

18.1.2.3. Условия максимума и минимума на оптическую разность хода

Из (18.1.2.1.) и (18.1.2.2.):

После сокращения получим условия на Δ:

 

18.1.2.4. Положение максимумов и минимумов при интерференции от двух источников

S1 и S2 - когерентные источники света, имеющие одну и ту же начальную фазу колебаний.

Пусть показатели преломления n1 = n2 = 1, тогда оптическая разность хода Δ = r1 - r2. Из рисунка следует, что

Обычно L/d ~ 103, с учетом этого r1 + r2 ≈ 2L, тогда:

,

откуда

.

Положения максимумов получим, наложив на Δ условие максимума, см. (18.1.2.3).

Аналогично - для минимумов:

Расстояния между минимумами и максимумами одинаковы:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]