Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матан new version.doc
Скачиваний:
8
Добавлен:
19.12.2018
Размер:
944.13 Кб
Скачать
  1. Понятие функции одного переменного. Виды и способа задания функции

Если каждому элементу х множ-ва Х (х є Х) ставится в соответствие вполне определённый элемент у множ-ва У (у є У), то говорят, что на множ-ве Х задана функция у = f(x). При этом х назыв. независимой переменной (или аргументом), у – зависимой переменной, а буква f обозначает закон соответсвия. Множ-во Х назыв. областью определения, а множ-во У – областью значений функции.

Способы задания фун-ий.

а)аналитический, если фун-ия задана формулой у = f(x)

б)табличный способ. Состоит в том, что фун-ия задаётся таблицей, содержащей значения аргумента х и соответствующие значения фун-ии f(x).

в)графический. Состоит в изображении графика фун-ии – множества точек (х,у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения фун-ии f(x).

г)логический

2. Предел функции и его свойства

Определение Коши используется для обоснования существования предела, а опред-ие Гейна – для обоснования отсутствия предела.

Свойства предела : предел единственен и фун-ия в некоторой окрестности предельной точки ограничена.

Определение пределов по Гейне. Число А назывется пределом функции f(x) в т x0, если для для любой сходящейся к x0 последовательности (1) значений x, отличных от x0 соответствует последовательность (2), сходящаяся к числу А.

lim x→x0 f(x) = A

  1. f(x)=c; любое x0

x1, x2, x3…→x0

c, c, c,c…→c limx→x0c=c

  1. f(x)=x; любое x0

x1; x2; x3…→x0

x1; x2; x3…→x0 limx→x0x=x0

Определение пределов по Коши. Число А называется пределом функции f(x) в т x0, если для любого ε>0 δ=δ(ε), что ля всех x, удовлетворяющих условию или приним. δ – окрестности х0 |x-x0|<δ x≠x0

|f(x)-A|<ε

-δ<x-x0<δ

-δ+x0<x<δ+x0

1) Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

2)Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

3) Предел произведения функции на постоянную величину

Постоянный коэффициент можно выносить за знак предела:

4)Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

5)Предел частногоПредел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

если

3. Односторонние пределы. Существование предела в точке

Число А называется правым(левым) пределом функции f(x), если для любого ε>0 существует δ=δ(ε), что для всех x, отвеч неравенству x0<x<x0+δ (x0-δ<x<x0) => |f(x)- A|<ε

f(x) всегда имеет предел в т х0 тогда и только тогда, когда в этой точке существует как правый так и левый пределы, при этом они равны.

Сущ-ие предела в точке. Число А назыв. пределом фун-ии f(x) при х, стремящемся к х0 (или точке х0), если для любого, даже сколь угодно малого положительного числа ε>0, найдётся такое положительное число δ>0 (зависящее от ε, δ=δ(ε)), что для всех х, не равных х0 и удовлетворяющее условию , выполняется неравенство

Обозначается или