
- •Часть 1
- •Изучаемые вопросы:
- •1. Предмет химии. Значение химии в изучении природы и развитии техники
- •Атомная масса (атомный вес) природного элемента. Изотопный состав элементов. Дефект массы.
- •2. Основные количественные законы химии
- •Вопросы для самоконтроля
- •Литература
- •Лекция 3-5 (6 ч)
- •Тема 3. Агрегатное состояние вещества
- •Изучаемые вопросы:
- •3.1. Общая характеристика агрегатного состояния вещества
- •3.2. Газообразное состояние вещества. Законы идеальных газов. Реальные газы
- •3.3. Характеристика жидкого состояния вещества
- •3.4. Характеристика твёрдого состояния
- •Характеристики некоторых веществ
- •3.5. Типы кристаллических решёток
- •Вопросы для самоконтроля:
- •Вопросы для самостоятельной работы:
- •Литература:
- •Лекция 6-8 (6 ч)
- •Тема 1. Строение вещества. Периодическая система элементов д. И. Менделеева
- •Изучаемые вопросы:
- •1.1. Современная модель строения атома
- •1.2. Квантовые числа
- •Орбитальное квантовое число 0 1 2 3 4
- •1.3. Строение многоэлектронных атомов
- •1.4. Периодические свойства элементов
- •1.5. Периодическая система элементов д. И. Менделеева
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 9-11 (6 ч)
- •Тема 2. Химическая связь и взаимодействия между молекулами
- •Изучаемые вопросы:
- •2.1. Общая характеристика химической связи
- •2.2. Типы химической связи
- •2.3.Типы межмолекулярных взаимодействий
- •2.4. Пространственная структура молекул
- •Число гибридных орбиталей равно числу исходных. При смешении s и р-орбиталей образуется две sp-гибридных орбитали, угол между осями которых равен 180°.
- •Метод валентных связей
- •Метод молекулярных орбиталей
- •Химическая связь в комплексных соединениях
- •Координационная теория Вернера
- •Номенклатура комплексных соединений
- •Диссоциация комплексных соединений
- •Природа химической связи в комплексах
- •Вопросы для самоконтроля:
- •Вопросы для самостоятельной работы:
- •Литература:
- •Лекции 12-13 (4 ч)
- •Тема 4. Энергетика химических процессов
- •Изучаемые вопросы:
- •4.1. Общие понятия термодинамики
- •4.2. Первый закон (начало) термодинамики. Внутренняя энергия системы. Энтальпия системы
- •4.3. Термохимия. Тепловые эффекты химических реакций
- •4.4. Закон Гесса и следствия из него
- •I путь.
- •II путь.
- •4.5. Основные формулировки второго закона (начала) термодинамики
- •4.6. Принцип работы тепловой машины. Кпд системы
- •4.7. Свободная и связанная энергии. Энтропия системы
- •4.8. Энергия Гиббса, энергия Гельмгольца и направленность химических реакций
- •Для определения температуры (Тр), выше которой происходит смена знака энергии Гиббса реакции, можно воспользоваться условием
- •Вопросы для самоконтроля:
- •Литература:
- •Лекции 14-15 (4 ч)
- •Тема 5. Химическая кинетика и катализ
- •Изучаемые вопросы:
- •5.1. Понятие о химической кинетике
- •5.2. Факторы, влияющие на скорость химических реакций. Закон действующих масс
- •5.3. Классификация химических реакций по молекулярности и по порядку
- •5.4. Кинетические уравнения реакци первого и второго порядка
- •Поле интегрирования
- •5.5. Теория активизации молекул. Уравнение Аррениуса
- •5.6. Особенности каталитических реакций. Теории катализа
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 16 (2 ч)
- •Тема 6. Химическое равновесие
- •Изучаемые вопросы:
- •6.1. Обратимые и не обратимые реакции. Признаки химического равновесия
- •6.2. Константа химического равновесия
- •6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье
- •6.4. Правило фаз Гиббса. Диаграмма состояния воды
- •Правило фаз для воды имеет вид
- •6.5. Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
- •Вопросы для самоконтроля:
- •Лекции 15-17 (6 ч)
- •Тема 7. Растворы. Дисперсные системы
- •Изучаемые вопросы:
- •7.1. Сольватная (гидратная) теория растворения
- •7.2. Общие свойства растворов
- •7.3. Типы жидких растворов. Растворимость
- •7.4. Свойства слабых электролитов
- •7.5. Свойства сильных электролитов
- •7.6. Классификация дисперсных систем
- •7.7. Получение коллоидно-дисперсных систем
- •7.8. Устойчивость коллоидных растворов. Коагуляция. Пептизация
- •7.9. Свойства коллоидно-дисперсных систем
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 13 (2ч)
- •Тема 8. Кислотно-основные и окислительно-восстановительные свойства вещества
- •Изучаемые вопросы:
- •8.1. Особенности обменных процессов
- •8.2. Особенности окислительно-восстановительных процессов
- •Вопросы для самоконтроля:
- •Литература:
- •Лекции 14-15 (4 ч)
- •Тема 9. Электрохимические системы
- •Изучаемые вопросы:
- •9.4. Электродвижущая сила гальванического элемента.
- •9.1. Общие понятия электрохимии. Проводники первого и второго рода
- •9.2. Понятие об электродном потенциале
- •9.3. Гальванический элемент Даниэля-Якоби
- •9.4. Электродвижущая сила гальванического элемента
- •9.5. Классификация электродов
- •9.6. Поляризация и перенапряжение
- •9.7. Электролиз. Законы Фарадея
- •9.8. Коррозия металлов
7.5. Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кристаллическом состоянии построены из ионов (они хорошо растворяются в воде), гидроксиды щелочных и щелочноземельных металлов (щелочи), некоторые кислоты (НСl, HBr, HI, HсlO4, HNO3, H2SO4). Многие свойства растворов, такие, как осмотическое давление, температура кипения и замерзания, давление насыщенного пара растворителя над раствором, зависят как от концентрации раствора, т. е. от числа растворенных в нем частиц, так и от взаимного влияния этих частиц друг на друга. Степень взаимодействия частиц в растворе тем выше, чем больше плотность их зарядов и чем меньше среднее расстояние между ними.
В растворах слабых электролитов взаимодействие между ионами относительно невелико вследствие их незначительной концентрации. Сильные электролиты диссоциируют практически полностью. В растворах сильных электролитов из-за сильной диссоциации концентрация ионов довольно велика, так что силы межионного взаимодействия заметно проявляются даже при малой концентрации электролита. В результате ионы оказываются не вполне свободными в своем движении, и все свойства электролита, зависящие от числа ионов, проявляются слабее, чем следовало бы ожидать при полной диссоциации электролита на невзаимодействующие между собой ионы.
Подобные несоответствия объясняет теория сильных электролитов, разработанная П. Дебаем и Э. Хюккелем (1923). Согласно этой теории, в растворах сильных электролитов действуют электростатические силы притяжения между разноименными ионами и силы отталкивания – между одноименными. Вокруг каждого иона образуется ионная атмосфера, состоящая из ионов противоположного знака. Каждый из ионов этой атмосферы находится в окружении другой ионной атмосферы. Поэтому раствор сильного электролита можно рассматривать как систему равномерно распределенных по всему объему раствора разноименных ионов, каждый из которых находится в центре силового поля создаваемого окружающими ионами. Тепловое движение постоянно изменяет картину распределения ионов в такой сфере: в ней происходит постоянный ионный обмен. Ввиду того, что радиус ионной атмосферы относительно велик, атмосферы двух соседних ионов пересекаются, в результате чего каждый ион в данный момент может входить в состав одной или даже нескольких ионных атмосфер других ионов.
Все это обуславливает довольно сложные взаимоотношения между компонентами раствора, которые не могут не сказываться на его свойствах. Поэтому для описания состояния ионов в растворе пользуются их активностью, т. е. условной (эффективной) концентрацией ионов, в соответствии с которой они действуют в химических процессах (а = С). Коэффициенты активности зависят от природы растворителя и растворенного вещества, концентрации раствора и температуры. Для сильных электролитов их называют кажущейся степенью диссоциации или коэффициентом электропроводности.
В области разбавленных растворов (концентрация ниже 0,1 моль/дм3) коэффициенты активности зависят главным образом от концентрации и заряда ионов, присутствующих в растворе и мало зависят от природы растворенных веществ. Эта закономерность известна в теории растворов под названием правила ионной силы. Согласно этому правилу, ионы с одинаковыми зарядами, независимо от их природы, в разбавленных растворах с одинаковой ионной силой имеют равные коэффициенты активности. Ионной силой раствора (I) называется полусумма произведений концентраций всех ионов присутствующих в растворе, на квадрат их заряда:
I = 0,5Cizi2 (7.36)
Например, ионная сила раствора хлорида алюминия с концентрацией 0.01 моль/дм³, диссоциирующего AlCl3 Al+3 + 3Cl-, равна
I = 0,5(0,01 . 32 + 0, 03 . 12) = 0,06
Правило ионной силы позволяет рассчитать коэффициенты активности отдельных ионов в разбавленных растворах. Коэффициенты активности ионов уменьшаются с увеличением ионной силы растворов и заряда ионов (табл. 6)
Для разбавленных растворов, ионная сила которых не превышает 0,01, коэффициент активности ионов связан с ионной силой раствора следующим соотношением:
lg = -0,5z2 √I (7.37)
Коэффициенты активности широко используются в практике и теоретических расчетах, но сами по себе не раскрывают природу процессов, протекающих в реальных системах. Они просто позволяют, используя простейшие соотношения, быстро и легко рассчитать реальные свойства разбавленных растворов сильных электролитов.
Таким образом, поведение растворов слабых электролитов описывается законом разведения Оствальда, а разбавленных растворов сильных электролитов – моделью ионной атмосферы Дебая-Хюккеля. Однако общая теория растворов, охватывающая все виды растворов электролитов и весь диапазон концентраций, до сих пор не создана.
Таблица 7.6
Коэффициент активности ионов в водных растворах (при 298 К)
Ионы |
Коэффициенты активности для ионной силы |
|||||
0,001 |
0,01 |
0,02 |
0,05 |
0,07 |
0,10 |
|
Однозарядные |
0,98 |
0,92 |
0,89 |
0,85 |
0,83 |
0,80 |
Двузарядные |
0,77 |
0,58 |
0,50 |
0,40 |
0,36 |
0,30 |
Трехзарядные |
0,73 |
0,47 |
0,37 |
0,28 |
0,25 |
0,21 |