
- •Часть 1
- •Изучаемые вопросы:
- •1. Предмет химии. Значение химии в изучении природы и развитии техники
- •Атомная масса (атомный вес) природного элемента. Изотопный состав элементов. Дефект массы.
- •2. Основные количественные законы химии
- •Вопросы для самоконтроля
- •Литература
- •Лекция 3-5 (6 ч)
- •Тема 3. Агрегатное состояние вещества
- •Изучаемые вопросы:
- •3.1. Общая характеристика агрегатного состояния вещества
- •3.2. Газообразное состояние вещества. Законы идеальных газов. Реальные газы
- •3.3. Характеристика жидкого состояния вещества
- •3.4. Характеристика твёрдого состояния
- •Характеристики некоторых веществ
- •3.5. Типы кристаллических решёток
- •Вопросы для самоконтроля:
- •Вопросы для самостоятельной работы:
- •Литература:
- •Лекция 6-8 (6 ч)
- •Тема 1. Строение вещества. Периодическая система элементов д. И. Менделеева
- •Изучаемые вопросы:
- •1.1. Современная модель строения атома
- •1.2. Квантовые числа
- •Орбитальное квантовое число 0 1 2 3 4
- •1.3. Строение многоэлектронных атомов
- •1.4. Периодические свойства элементов
- •1.5. Периодическая система элементов д. И. Менделеева
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 9-11 (6 ч)
- •Тема 2. Химическая связь и взаимодействия между молекулами
- •Изучаемые вопросы:
- •2.1. Общая характеристика химической связи
- •2.2. Типы химической связи
- •2.3.Типы межмолекулярных взаимодействий
- •2.4. Пространственная структура молекул
- •Число гибридных орбиталей равно числу исходных. При смешении s и р-орбиталей образуется две sp-гибридных орбитали, угол между осями которых равен 180°.
- •Метод валентных связей
- •Метод молекулярных орбиталей
- •Химическая связь в комплексных соединениях
- •Координационная теория Вернера
- •Номенклатура комплексных соединений
- •Диссоциация комплексных соединений
- •Природа химической связи в комплексах
- •Вопросы для самоконтроля:
- •Вопросы для самостоятельной работы:
- •Литература:
- •Лекции 12-13 (4 ч)
- •Тема 4. Энергетика химических процессов
- •Изучаемые вопросы:
- •4.1. Общие понятия термодинамики
- •4.2. Первый закон (начало) термодинамики. Внутренняя энергия системы. Энтальпия системы
- •4.3. Термохимия. Тепловые эффекты химических реакций
- •4.4. Закон Гесса и следствия из него
- •I путь.
- •II путь.
- •4.5. Основные формулировки второго закона (начала) термодинамики
- •4.6. Принцип работы тепловой машины. Кпд системы
- •4.7. Свободная и связанная энергии. Энтропия системы
- •4.8. Энергия Гиббса, энергия Гельмгольца и направленность химических реакций
- •Для определения температуры (Тр), выше которой происходит смена знака энергии Гиббса реакции, можно воспользоваться условием
- •Вопросы для самоконтроля:
- •Литература:
- •Лекции 14-15 (4 ч)
- •Тема 5. Химическая кинетика и катализ
- •Изучаемые вопросы:
- •5.1. Понятие о химической кинетике
- •5.2. Факторы, влияющие на скорость химических реакций. Закон действующих масс
- •5.3. Классификация химических реакций по молекулярности и по порядку
- •5.4. Кинетические уравнения реакци первого и второго порядка
- •Поле интегрирования
- •5.5. Теория активизации молекул. Уравнение Аррениуса
- •5.6. Особенности каталитических реакций. Теории катализа
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 16 (2 ч)
- •Тема 6. Химическое равновесие
- •Изучаемые вопросы:
- •6.1. Обратимые и не обратимые реакции. Признаки химического равновесия
- •6.2. Константа химического равновесия
- •6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье
- •6.4. Правило фаз Гиббса. Диаграмма состояния воды
- •Правило фаз для воды имеет вид
- •6.5. Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
- •Вопросы для самоконтроля:
- •Лекции 15-17 (6 ч)
- •Тема 7. Растворы. Дисперсные системы
- •Изучаемые вопросы:
- •7.1. Сольватная (гидратная) теория растворения
- •7.2. Общие свойства растворов
- •7.3. Типы жидких растворов. Растворимость
- •7.4. Свойства слабых электролитов
- •7.5. Свойства сильных электролитов
- •7.6. Классификация дисперсных систем
- •7.7. Получение коллоидно-дисперсных систем
- •7.8. Устойчивость коллоидных растворов. Коагуляция. Пептизация
- •7.9. Свойства коллоидно-дисперсных систем
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 13 (2ч)
- •Тема 8. Кислотно-основные и окислительно-восстановительные свойства вещества
- •Изучаемые вопросы:
- •8.1. Особенности обменных процессов
- •8.2. Особенности окислительно-восстановительных процессов
- •Вопросы для самоконтроля:
- •Литература:
- •Лекции 14-15 (4 ч)
- •Тема 9. Электрохимические системы
- •Изучаемые вопросы:
- •9.4. Электродвижущая сила гальванического элемента.
- •9.1. Общие понятия электрохимии. Проводники первого и второго рода
- •9.2. Понятие об электродном потенциале
- •9.3. Гальванический элемент Даниэля-Якоби
- •9.4. Электродвижущая сила гальванического элемента
- •9.5. Классификация электродов
- •9.6. Поляризация и перенапряжение
- •9.7. Электролиз. Законы Фарадея
- •9.8. Коррозия металлов
7.3. Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в ограниченных количествах (поваренная соль в воде).
Процесс растворения – самопроизвольный процесс, идущий с убылью свободной энергии. Жидкие растворы можно разделить на: растворы газов в жидкостях; растворы жидкостей в жидкостях; растворы твердых тел в жидкостях. Рассмотрим каждый тип жидких растворов.
Растворы газов в жидкостях. Газы при соприкосновении с жидкостями способны растворяться в ней. Растворимость газов зависит от их природы, характера жидкости, посторонних примесей, а также от давления и температуры. Растворимость одних и тех же газов в различных растворителях разная. Газы, молекулы которых неполярны, растворяются, как правило, лучше в неполярных растворителях. И, наоборот, в полярных растворителях лучше растворяются газы, молекулы которых полярны. Например, растворимость аммиака выше всего в воде, как в сильно полярной жидкости (87,6 г в 100 г H2O), толуоле же, как в неполярном растворителе, растворимость его ничтожна (0,048 г в 100 г толуола).
Посторонние электролиты, содержащиеся в воде, как правило, уменьшают растворимость газов; неэлектролиты, склонные к дегидратации, понижают растворимость газов в воде, а не склонные к дегидратации незначительно повышают растворимость газов в воде.
Зависимость растворимости газов от давления выражается законом Генри (1803): растворимость данного газа в жидкости при постоянной температуре прямо пропорциональна его давлению над жидкостью:
C = KP, (7.19)
где С – концентрация газа в жидкости; P – давление газа над раствором; K – коэффициент пропорциональности, зависящий от природы газа.
Растворимость газов в сильной степени зависит от температуры. Согласно принципу Ле-Шателье, который применим для равновесных систем, растворимость газов будет уменьшаться с нагреванием и увеличиваться при охлаждении.
Закон Генри справедлив только для разбавленных растворов и при малых давлениях, т.е. когда газы подчиняются законам идеальных газов. Газы, выступающие во взаимодействии с растворителем (HCl, NH3, SO2 и др.), закону Генри не подчиняются.
Растворы жидкостей в жидкостях. В зависимости от природы жидкости могут смешиваться друг с другом в различных соотношениях:
1) смешиваются друг с другом в любых соотношениях с образованием совершенно однородного раствора (вода и глицерин, вода и этиловый спирт). При взаимном растворении жидкостей силы притяжения между молекулами различных жидкостей одинаковы с силами притяжения между молекулами одной и той же жидкости. Для подобных растворов сохраняются общие свойства растворов и выполняются законы Рауля и Вант-Гоффа;
2) обладают ограниченной растворимостью друг в друге (вода и анилин, вода и эфир). Причем растворимость зависит от природы смешиваемых жидкостей, температуры, концентрации. В зависимости от концентрации могут образовываться три фазы: насыщенный раствор первой жидкости во второй; насыщенный раствор второй жидкости в первой и двухслойная система. Второй вариант наблюдается в том случае, когда силы сцепления между разнородными молекулами значительно меньше сил сцепления между однородными молекулами, т.е. когда положительные отклонения парциальных давлений пара раствора от закона Рауля велики и превосходят некоторую предельную величину;
3) практически не растворимы друг в друге (вода и бензол, вода и ртуть).
Если в систему, состоящую из двух взаимно нерастворимых жидкостей, ввести третье вещество, которое растворимо в обеих жидкостях, то оно распределится между ними. При этом выполняется закон распределения Нернста-Шилова (1890): при постоянной температуре соотношение равновесных концентраций между несмешивающимися жидкостями (фазами) является величиной постоянной, независимой от общего количества компонентов:
Kрас = CА/СВ, (7.20)
где Крас – коэффициент распределения (зависит от природы растворителей и растворяемого вещества, температуры); CА и СВ – молярные концентрации вещества в жидкостях (фазах) А и В.
Закон распределения находится в основе методов экстракции (извлечения), в котором извлекается один из компонентов смесей (растворов) с помощью растворителя, не смешивающегося с раствором. Применяют, например, при очистке сточных вод, в распределительной хроматографии и т. д.
Растворы твердых тел в жидкостях. Растворимость твердых веществ также определяется природой растворителя и растворенного вещества и зависит от температуры. В отличие от растворимости газов, растворимость твердых тел сравнительно мало изменяется с давлением.
Растворимостью (S) данного вещества называется количество его, выраженное в граммах, насыщающее 100 г растворителя. К хорошо растворимым относят вещества, растворяющиеся более 1 г в 100 г воды; к малорастворимым относят соединения, растворяющиеся от 0,001 до 1 г в 100 г воды; к нерастворимым относят соединения, растворяющиеся менее 0,001 г в 100 г воды.
При растворении могут образоваться растворы:
1) ненасыщенные – это растворы, которые содержат растворяемое вещество в меньшем количестве, чем допустимо растворимостью;
2) насыщенные – растворы, содержащие максимальное количество вещества, допустимое растворимостью при данной температуре;
3) пересыщенные – это растворы, содержащие растворяемое вещество в большем количестве, чем насыщенные.
Пересыщенные растворы метастабильны, т. е. неустойчивы. Их получают путем охлаждения растворов близких к насыщению и применяют для перекристаллизации веществ при их очистке от примесей или выращивании кристаллов. В первом случае охлаждение проводят достаточно быстро, а во втором – медленно.
При растворении твердых веществ могут образовываться как растворы неэлектролитов, так и растворы электролитов. К ним применимы общие свойства растворов.