
- •Глава 1. Методология биологии и биофизики
- •1.1. Предмет и основные задачи курса истории науки
- •1.2. Наука, научная методология. Методология и проблемы в биологии и биофизике
- •1.3. О научном методе в общем
- •1.4. О научной методологии чуть более строго
- •1.5. Что такое научное знание и как оно развивается
- •1.6. Методология об этапах развития научного знания
- •1.7. Эвристика индивидуального научного поиска
- •1.8. Определение, методология и проблемы биологии
- •1.9. Основные проблемы современной биологии
- •1.10. Определение, методология и проблемы биофизики
- •Глава 2. От протознания к естественной истории (от первобытного общества к эпохе Возрождения)
- •2.1. У истоков биологического знания
- •2.2. Культурный переворот в античной Греции: от мифа к логосу, от теогонии к возникновению природы
- •2.3. Эллинизм как синтез восточной и древнегреческой науки
- •2.4. Отношение к образованию и к науке в средневековье
- •2.5. Эпоха Возрождения и революция в идеологии и естествознании
- •2.5.1. Изобретение книгопечатания
- •2.5.2. Развитие науки в период становления капитализма
- •2.5.3. Новые организационные и материальные возможности раз-вития науки
- •2.5.3.1. Организация Академий наук
- •2.5.3.2. Открытие обсерваторий
- •2.5.3.3. Открытие ботанических садов
- •2.5.3.4. Организация музеев
- •2.5.3.5. Публикация трудов Академий
- •2.5.3.6. Создание библиотек
- •2.5.3.7. Изобретение приборов
- •2.5.3.8. Путешествия
- •2.5.4. Разработка новых принципов познания
- •2.5.5. Развитие принципов естественнонаучного познания природы в трудах Бэкона, Галилея и Декарта
- •2.5.6. Лейбниц и идея «лестницы существ»
- •2.5.6. И. Ньютон
- •2.5.7. Французский материализм XVIII века
- •2.6. Создание Российской Академии наук
- •2.6.1 Исторические условия создания ран
- •2.6.2. Первые учреждения ран
- •2.6.3. Социо-культурные условия формирования науки в России
- •Глава 3. От естественной истории к современной биологии (биология нового времени до середины XIX в.)
- •3.1. Развитие ботанических исследований
- •3.1.1. Попытки классификации растений в XVI веке
- •3.1. 2. Систематика и морфология растений в XVII веке
- •3.1.3. Развитие микроскопической анатомии растений в XVII веке
- •3.1.4. Система к. Линнея
- •3.1.5. Попытки создания «естественных» систем в XVIII веке
- •3.1.6. Зарождение физиологии растений
- •3.1.7. Развитие учения о поле и физиологии размножения растений
- •3.2. Развитие зоологических исследований
- •3.2.1. Описания и попытки классификации животных в XVI – XVII веках
- •3.2.2.Зоологические исследования в XVIII веке
- •3.2.3. Изучение ископаемых организмов
- •3.3. Развитие исследований по анатомии, физиологии, сравнительной анатомии и эмбриологии животных
- •3.3.1. Анатомия животных и человека в XVI – XVII веках
- •3.3.2. В. Гарвей и становление физиологии
- •3.3.3. Микроскопическая анатомия и изучение простейших
- •3.3.4. Физиология в XVIII веке
- •3.3.5. Становление сравнительной анатомии
- •3.3.6.Эмбриология животных. Преформизм и эпигенез
- •3.4. Господство метафизического мировоззрения в естествознании XVII – XVIII веков
- •3.4.1. Достижения биологии XVII – XVIII веков
- •3.4.2. Господство метафизического мышления
- •3.4.3. Концепция постоянства видов и преформизм
- •3.4.4. Идеалистическая трактовка органической целесообразности
- •3.5. Возникновение и развитие представлений об изменяемости живой природы
- •3.5.1. Допущение ограниченной изменчивости видов
- •3.5.2.Представление о "естественном сродстве" и "общих родоначальниках".
- •3.5.3. Фактор времени в изменении организмов.
- •3.5.4. Последовательность природных тел. "Лестница существ".
- •3.5.5. Идея «прототипа» и единства плана строения организмов
- •3.5.6. Идея трансформации органических форм
- •3.5.7. Идея самозарождения и ее отношение трансформизму
- •3.5.8. Естественное возникновение органической целесообразности
- •3.6. Первая попытка создания концепции эволюции органического мира (Ламарк и его учение)
- •3.6.1. Ламарк. Краткие биографические сведения
- •3.6.2. Философские воззрения Ламарка
- •3.6.3. Сущность жизни по Ламарку
- •3.6.4. Представления Ламарка о происхождении жизни
- •3.6.5. Развитие от простого к сложному и градация форм по Ламарку
- •3.6.6. Отрицание реальности видов
- •3.6.7. Причины развития живой природы по Ламарку
- •3.7. Основные черты учения ч. Дарвина
- •3.7.1. Зарождение эволюционной идеи ч. Дарвина
- •3.7.2. Содержание теории эволюции ч. Дарвина
- •3.8. Создание и развитие эволюционной палеонтологии
- •3.8.1. Роль теории ч. Дарвина в перестройке палеонтологии
- •3.8.2. В. О. Ковалевский и создание эволюционной палеонтологии
- •3.8.3. Попытки ламаркистского истолкования данных палеонтологии
- •3.8.4. Развитие палеонтологического метода в трудах л. Долло
- •3.8.5. Обнаружение новых ископаемых форм
- •3.9. Создание эволюционной эмбриологии животных
- •3.9.1. Сравнительное изучение эмбрионального развития
- •3.9.2. Создание а. О. Ковалевским и и. И. Мечниковым эволюционной эмбриологии
- •3.9.3. Подтверждение гомологии зародышевых листков позвоночных и беспозвоночных
- •3.9.4. Проблемы происхождения многоклеточных организмов
- •3.10. Перестройка сравнительной анатомии на основе Дарвинизма
- •3.10.1. Возникновение филогенетического направления
- •3.10.2. Учение о гомологии
- •3.10.4. Новая трактовка зоологических типов
- •3.10.5. Кризис филогенетического направления в морфологии
- •3.11. Развитие филогенетической систематики животных
- •3.11.1. Представления ч. Дарвина и э. Геккеля о принципах
- •3.11.2. Эмбриологическое направление в систематике
- •3.11.3. Пересмотр основных типов в систематике животных
- •3.12. Развитие физиологии животных и человека
- •3.12.1. Общая характеристика развития физиологии XIX веке
- •3.12.2. Новые физиологические методы
- •3.12.3. Организация первых физиологических лабораторий и
- •3.12.4. Развитие физиологии в отдельных странах
- •3.12.5. Достижение физиологии в XIX столетии
- •3.13. Развитие эмбриологии растении
- •3.13.1. Ч. Дарвин и раскрытие значения перекрестного опыления
- •3.13.2. Изучение зародышевого мешка и пыльцевых зерен. Выяснение э. Страсбургером и и. Н. Горожанкиным механизма оплодотворения
- •3.13.3. Дальнейшие исследования процесса оплодотворения. Работы в. И. Беляева, м. Трейба, с. Г. Навашина и других
- •3.13.4. Открытие с. Г. Навашиным двойного оплодотворения
- •3.14. Начало перестройки морфологии и систематики растений на эволюционной основе
- •3.14.1. Поиски свидетельств филогенетического единства
- •3.14.2. Разработка систематики низших растений
- •3.14.3. Первые попытки создания филогенетических систем в трудах э. Краузе и ю. Сакса
- •3.14.4. Филогенетические системы конца XIX века. Разработка
- •3.14.5. Позднейшие системы растений
- •3.15. Оформление физиологии растений в самостоятельную науку
- •3.15.1. Продукты и схемы процесса фотосинтеза
- •3.15.2. Пигменты растений
- •3.15.3. Фотосинтез и различные факторы среды
- •3.15.4. Почвенное питание растений
- •3.15.5. Азотное питание растений
- •3.15.6. Осмос и передвижение растительных соков
- •3.15.7. Транспирация растений
- •3.15.8. Дыхание и брожение
- •3.15.9. Рост растений
- •3.15.10. Раздражимость и движение растений
- •3.15.11. Экспериментальная морфология растений
- •3.16. Изучение процесса размножения клеток
- •3.16.2. Детальные описания митозов во второй половине 70-х годов
- •3.16.3. Выяснение невозможности «свободного образования» клеток
- •3.17. Эволюционная теория во второй половине XIX века
- •3.17.1. Дарвинизм — единственная подлинно научная теория
- •3.17.2. Борьба за утверждение дарвинизма
- •3.17.3. Неоламаркизм и его разновидности
- •3.17.4. Телеологические концепции эволюции
- •3.17.5. Предтечи мутационной теории эволюции
- •3.17.6. Особенности развития эволюционной теории в России
- •3.17.7. Гипотеза «органического», или «совпадающего», отбора
- •3.17.8. Первые экспериментальные доказательства эффективности естественного отбора
- •Глава 4. Становление и развитие современной биологии (с середины XIX в. До начала XXI в.)
- •4.1. Изучение физико-химических основ жизни
- •4.1.1. Первые попытки создать специфическую физику и химию живого
- •4.1.2. Создание теорий химического строения, жиров, углеводов и белков
- •4.1.3. Появление калориметрии
- •4.1.4. Первые успехи в изучении природы биокаталитических реакций
- •4.1.5. Разработка биохимических основ учения о питании
- •4.1.6. Открытие витаминов и коэнзимов
- •4.1.7. Открытие гормонов
- •4.1.8. Создание новых методов
- •4.1.9. Структура и функции белков
- •4.1.10. Изучение структуры нуклеиновых кислот
- •4.1.11. Биосинтез белка
- •4.1.12. Решение проблемы аэробного дыхания
- •4.1.13. Создание представлений о системе биохимических обменных процессов
- •4.1.144. Исследования в области молекулярной биоэнергетики
- •4.1.15. Попытки реконструировать предбиологическую эволюцию
- •4.2. Микробиология и ее преобразующее воздействие на биологию
- •4.2.1. Открытие микроорганизмов
- •4.2.2. Учения о брожениях, открытие анаэробиоза
- •4.2.3. Опровержение л. Пастером теории самопроизвольного зарождения микроорганизмов
- •4.2.4. Формирование представлений о микробной природе инфекционных заболеваний. Подтверждение л.Пастером микробной теории инфекционных заболеваний
- •4.2.5. Золотой век медицинской микробиологии
- •4.2.6. Фагоциторная концепция и.И. Мечникова
- •4.2.7. Развитие гуморальной теории иммунитета
- •4.2.8. Практическое применение иммунизации и химиотерапии
- •4.2.9. Открытие антибиотиков
- •4.2.10. Разработка методов микробиологических исследований
- •4.2.11. Изучение участия микробов в природных процессах.
- •4.2.12. Открытие хемосинтеза. Создание почвенной и экологической бактериологии
- •4.2.13. Физиология и биохимия микроорганизмов
- •4.2.14. Изучение фотосинтезирующих и азотфиксирующих бактерий
- •4.2.15. Теория биохимического единства жизни
- •4.2.16. Морфология и цитология микроорганизмов
- •4.2.17. Систематика микроорганизмов, построение филогенетического древа
- •4.2.18. Молекулярная палеонтология
- •4.2.19. Практическое использование биосинтетической и трансформирующей деятельности микробов
- •4.2.20. Проблема управляемого культивирования
- •4.2.21. Основные этапы развития генетики микроорганизмов
- •4.2.22. Генетика бактерий
- •4.2.23. Изучение трансформации, трансдукции, конъюгации и лизогенной конверсии
- •4.3. Возникновение и развитие вирусологии
- •4.3. 1.Открытие вирусов
- •4.3.2. Биоразнообразие вирусов
- •4.3.3. Этапы развития вирусологии
- •4.3.4. Развитие концепции о природе вирусов
- •4.3.5. Принципы организации вирусов
- •4.3.6. Вирусы бактерий
- •4.3.7. Вирусы как возбудители заболеваний человека
- •4.3.8. Вирусы и рак
- •4.3.9. Применение вирусов
- •4.3.10. Интерферон
- •4.4. Развитие клеточной теории во второй половине XIX века, начало цитологических исследований, изучение структуры клетки
- •Развитие цитологии в первой половине XX века
- •Хромосомная теория наследственности
- •Новые методы исследований
- •Ультраструктура клетки
- •Проницаемость клеток и модели мембраны
- •Цитология во 1950-1980 гг.
- •Деление клеток и его регуляция
- •Симбиотическая теория
- •Современная клеточная теория
- •4.5. От экспериментальной эмбриологии к генетике эмбриогенеза
- •4.6. Основные направления в физиологии животных и человека
- •4.7. Экология и биосфера
- •4.8. Антропология и эволюция человека
- •Библиографический список
3.11. Развитие филогенетической систематики животных
Вторая половина XIX в. отмечена бурным развитием систематики.
С момента опубликования теории происхождения видов Дарвина вопрос о том, действительно ли в природе происходит эволюция, и являются ли современные животные и растительные организмы потомками общих предков, оказался в центре внимания биологов. Неудивительно, что научные интересы систематиков этого периода были сосредоточены главным образом на филогенетических исследованиях. Такая направленность исследований способствовала, с одной стороны, более полному обоснованию эволюции в органическом мире, с другой — привела к упрочению и распространению особого способа изображения филогенетических связей в виде так называемых родословных древ.
Метод изображения отношений организмов при помощи разветвленных схем применялся в самой общей форме и раньше. Намек на него встречается уже в работе П. С. Палласа «Elenchus Zoophytorum» (1766). Ламарк в дополнениях к первому тому «Философии зоологии» привел графическое изображение родственных связей между различными группами животных в виде ветвящейся схемы. В 1829 г. Э. И. Эйхвальд в своем курсе зоологии поместил схему животного мира в виде ветвящегося дерева.
3.11.1. Представления ч. Дарвина и э. Геккеля о принципах
естественной систематики
Вопросы систематики занимали в творчестве Дарвина значительное место. Ему принадлежит, в частности, систематическое исследование подкласса усоногих раков. Вполне понятно, что, занимаясь практической систематикой, Дарвин изучил наиболее распространенные в то время классификационные схемы. Например, уже в первой «Записной книжке» (1837-1838) Дарвин анализировал числовые циклические системы У. Мак-Лея и его продолжателей — Э. Фриса и Э. Ньюмена. Эти крайне искусственные системы привлекли внимание Дарвина тем, что в них отмечалось наличие аналогичных признаков у организмов, живущих в сходных условиях. В «Происхождении видов» Дарвин вернулся к анализу числовых систем, причем им руководило стремление выделить их рациональное зерно — идею параллелизма, иногда наблюдаемую «в числе подгрупп различных классов», которая появляется у видов различных классов в результате их приспособления «к жизни в одной из трех сред — на суше, в воздухе или в воде...». Дарвин писал, что «натуралист, сталкиваясь с параллелизмом подобного рода, произвольным увеличением или уменьшением значения групп в разных классах (а весь наш опыт говорит нам, что установление этого значения все еще совершенно произвольно), может легко расширить этот параллелизм, и отсюда, по всей вероятности, произошли различные системы классификаций, в основу которых положены параллельные деления на три, на четыре, на пять, на семь и т. д.». С пониманием относясь к идее числовых циклических классификаций, Дарвин в то же время прекрасно осознавал всю искусственность этих построений. На вопрос о том, какая система организмов может быть названа естественной и какие принципы должны быть положены в ее основу, Дарвин уже в 1842 г. определенно отвечал: «...естественная система должна основываться на генеалогии». Одновременно он указал на значение сравнительно-анатомических, эмбриологических и палеонтологических данных для выяснения истинного родства животных. Более полные соображения о принципах и методах естественной классификации были высказаны им в «Происхождении видов»: «... я думаю,— писал он,— что общность происхождения, единственная известная причина близкого сходства организмов, и есть та связь между ними, которая, хотя и выражена разными степенями изменений, до некоторой степени раскрывается перед нами при помощи наших классификаций». И далее: «расширив пользование идей общего происхождения, которое, несомненно, представляет собой единственную известную причину сходства организмов, мы поймем и то, что разумеется под естественной системой: это — попытки генеалогической классификации, в которой разные степени приобретенного различия выражаются в терминах — разновидности, виды, роды, семейства, отряды и классы».
Ревностным поборником филогенетического направления в систематике был Э. Геккель. Под влиянием его работ значение данных анатомии, палеонтологии и особенно онтогении для установления родства между систематическими группами получает широкое признание. Опираясь на метод тройного параллелизма, Геккель обосновал возможность построения естественной системы в виде генеалогического древа. Он же первый построил «обобщающее филогенетическое древо» органического мира.
Геккель пришел к выводу, что различные категории систематики являются искусственными подразделениями и что различия между ними не абсолютны, а относительны. Он рассматривал главные систематические категории как самостоятельные стволы (Stamme, Phyla), каждый из которых развивается из собственного единого корня. Все формы, относящиеся к одному стволу (типу), т. е. классы, отряды, семейства, роды и виды, рассматривались Геккелем как потомки общего «самовоспроизводящего первичного организма».
Основную цель филогенетических исследований Геккель видел в прослеживании родственных связей между формами и построении родословного древа органического мира. С помощью этих «древ» он стремился воссоздать общую картину эволюции. Родство между формами, относящимися к одному типу, Геккель усматривал не в «плане строения», а в их происхождении от общего предка. Благодаря наличию промежуточных ступеней они находятся друг с другом в непрерывной связи. Определяя сущность и значение естественной системы организмов, Геккель писал, что существует единственная сложная система организмов, выражающая реальные соотношения между ними. Эти реальные соотношения связывают все живущие и вымершие организмы в главные группы естественной системы, которые имеют генеалогическую природу. Их родство по форме есть и родство по крови. Вследствие этого естественная система организмов есть их родословное «древо», или «генеалогия».
Геккель делил органический мир на три царства — протистов, животных и растений. Его родословное древо начиналось единым стволом и завершалось детализированными ветвями для отдельных типов, классов и даже отрядов. В пределах ветвей были объединены все организмы, в общем происхождении которых от единого предка Геккель не сомневался. Он утверждал, что ветви в самых общих чертах соответствуют тем «большим», или «главным, классам», для которых Дарвин также допускал только кровное родство. Величину расхождения этих ветвей он определял степенью отклонения родственных по крови организмов друг от друга и от общей родовой формы. Последовательно распространяя этот принцип на весь органический мир, Геккель вслед за Дарвином пришел к утверждению об общем происхождении обоих царств — животного и растительного.
В основании разработанного Геккелем родословного древа животного мира помещены так называемые монеры — воображаемые доклеточные безъядерные организмы. Далее следуют первичные одноклеточные организмы («амебы»), клеточные колонии («мореады») и полые шары («бластеады»). Следующий этап эволюции, приведший к образованию многоклеточных, связан, по Геккелю, с появлением их общего гипотетического предка — гастреи. Следующими последовательными ступенями развития, приводящими в конечном итоге к человеку, являются плоские, круглые и кишечно-жаберные черви, первичнохордовые, бесчерепные, круглоротые, первичные (селахии), хрящевые и двоякодышащие рыбы, первичные земноводные, чешуйчатые гады, первичные пресмыкающиеся, млекопитающие-рептилии, первичные млекопитающие, сумчатые, полуобезьяны, собакоголовые и человекоподобные обезьяны и, наконец, обезьяноподобные люди.
Рис. 3.10. Филогенетическое древо по Э. Геккелю (1866)
В филогенетических схемах Геккеля было много произвольного. Недостающие научные данные о переходных группах Геккель щедро восполнял богатой фантазией. Виною многих неточностей и прямых ошибок в его системе была склонность к поспешности в филогенетических обобщениях. Главный же источник погрешностей коренился в односторонности его метода. Геккель слишком переоценивал данные онтогенетического развития, придавая им абсолютное значение, а в самом онтогенезе видел только одну сторону — пассивное отражение филогенеза. Однако в целом исследования Геккеля сыграли выдающуюся роль в разработке филогенетической систематики.