Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
721_ych.posobie_Istoriya_i_metodologiya_biologi....doc
Скачиваний:
161
Добавлен:
06.12.2018
Размер:
13.17 Mб
Скачать

4.2.19. Практическое использование биосинтетической и трансформирующей деятельности микробов

С начала второй половины XX в. изучение синтетической и трансформирующей деятельности микроорганизмов ведется в тесном контакте с их селекцией и широким практическим использованием.

Главными продуктами биосинтетической активности микроорганизмов являются белки, витамины, гиббереллины, полисахариды, аминокислоты, ферменты, энтомопатогенные препараты, кормовые антибиотики. Непременным условием успешного развития этого направления стало ведение селекционной работы — получение и использование высокоактивных штаммов продуцентов, обеспечивающих рентабельность производства. Развитие селекции опирается на теоретический фундамент генетики. За сравнительно короткий срок (примерно 20 лет) при помощи селекционно-генетических методов были созданы многие высокоактивные штаммы микробов, продуктивность которых была повышена в 10—200 раз по сравнению с исходными штаммами. Их использование явилось предпосылкой создания ряда отраслей микробиологической промышленности. Классическим объектом селекции стали актиномицеты и грибы.

Начало изучения и использования биосинтетической деятельности микроорганизмов связано с получением пенициллина, который в 1940 г. Г. Флори и Э. Чейн выделили из культуры плесневого гриба, впервые описанного А. Флемингом в 1929 г. Этот продуцент был идентифицирован М. Тома как Penicillium notatum. Однако родоначальником всех высокоактивных штаммов продуцентов пенициллина, используемых в настоящее время, стал P. chrysogenum.

Существенными нововведениями в производстве пенициллина, значительно повысившими его выход, были: переход с поверхностного выращивания гриба на глубинное (этот новый тип промышленного культивирования приобрел большое значение не только для пенициллиновой, но и для всей микробиологической промышленности); перевод процесса биосинтеза с синтетических питательных сред на богатые питательными веществами среды; введение в ферментационную среду предшественника продукта биосинтеза — осколка пенициллиновой молекулы — фенилуксусной кислоты. Все эти факторы значительно усилили физиологическую активность продуцентов терапевтически наиболее ценного типа пенициллина — бензилпенициллина.

Культура актиномицета Actinomyces griseus — продуцента стрептомицина была впервые выделена в 1914 г. А. Краинским. В 40—50-е годы у микроорганизмов была открыта способность синтезировать и другие антибиотики: окситетрациклин (Act. rimosus, 1948), аурэомицин (биомицин; Str. aureofaciens, 1948), эритромицин (Act. erythreus, 1952), олеандомицин (Act. antibioticus, 1956), грамицидин (Вас. brevis) и т.д. По отношению ко всем продуцентам названных антибиотиков, а также таких антибиотиков, как ванкомицин, ристомицин, канамицин, гризеофульвин, альбомицин, целикомицин, для повышения активности продуцента были применены различные методы селекции.

Столь же успешно исследовалась способность микроорганизмов к синтезу аминокислот. Начало промышленного микробиологического синтеза аминокислот относится к 60-м годам, когда в Японии в результате обработки УФ-лучами исходных штаммов Micrococcus glutamicus, выделенного из почвы (С. Киношита, 1956), были получены штаммы, обладавшие высокой биосинтетической активностью. Изучение механизма синтеза аминокислот, вопросов взаимозаменяемости и конкурентности природных аминокислот и их аналогов позволило значительно глубже проникнуть в содержание физиолого-биохимических процессов, протекающих в микробных клетках. Были установлены явления ретроингибирования, аллостерического торможения при образовании аминокислот, определены места блокирования отдельных этапов биосинтеза у биохимических мутантов, установлены взаимные связи и перекрещивания синтезов различных аминокислот, роль предшественников и т. д.

Микробиологическим путем стали получать аланин, аспарагиновую и глутаминовую кислоты, лизин, метионин, триптофан, лейцин, изолейцин и т. п. Большое внимание уделялось изучению путей микробиологического синтеза кормового белка. В качестве субстрата для выращивания продуцентов — главным образом дрожжей рода Candida — используются углеводороды и гидролизаты растительных отходов. Не менее интенсивно велись поиски возможности использования биосинтетической деятельности микробов для получения препаратов различных ферментов. Основными продуцентами ферментов являются грибы рода Aspergillus, а также некоторые бактерии и актиномицеты.

Интенсивное развитие получил также микробиологический синтез органических кислот — лимонной, итаконовой, щавелевой, глюконовой,— наиболее активными продуцентами которых являются аспергиллы; гиббереллинов, основным продуцентом которых служит культура Fusarium moniliforme; витаминов — витамина В2 (рибофлавина), витамина В12 и эргостерина.

За последние годы разностороннему изучению и широкому практическому использованию подверглась трансформирующая активность микроорганизмов. Микробиологическую трансформацию используют главным образом для получения из стероидного сырья растительного происхождения веществ, обладающих фармацевтическими или гормональными свойствами. Поиски в природе микроорганизмов — трансформаторов стероидной молекулы, способных осуществлять тончайшие реакции (гидроксилирования, дегидрогенизации, дезацетилирования, восстановления и т. п.), ведут по двум направлениям: обнаружение в природе таксономических групп, способных производить ту или иную трансформацию, и выделение методами селекции наиболее активных штаммов. Так были найдены штаммы некоторых грибов, способные осуществлять трансформацию с выходом кортизона и гидрокортизона, актиномицеты и микобактерии, применяющиеся для получения преднизона, преднизолона, диакобала, культуры грибов и микобактерии, селективно дезацетилирующие стероидные соединения.

Исследования трансформирующей активности микроорганизмов основывались на углубленном изучении их физиологии и интенсификации нужных ферментативных процессов. Были найдены также коррелятивные связи между морфологическими свойствами и химической активностью и установлена возможность подбором соответствующих условий (например, окислительно-восстановительных) и усилением нужной ферментативной активности микробов направлять процесс трансформации.

В последнее время на вирусы, бактерии и грибы обратили внимание ученые-материаловеды. Оказывается, микроорганизмы способны не только вырабатывать различные нужные для современных технологий вещества, но и сами могут служить важными компонентами новых материалов. Например, ученые начинают использовать микроорганизмы для сборки кристаллов в сложные геометрические структуры или в качестве живой матрицы для роста кристаллов. Новые способы управлять ростом кристаллов вызвали огромный интерес среди материаловедов, так как существует теснейшая связь между структурой материала и его свойствами. Размеры некоторых микроорганизмов, например, вирусов, не превышают нескольких десятков нанометров в длину. До сих пор не удается получить однородные синтетические частицы таких размеров. Микроорганизмы же достаточно доступны, имеют одинаковый размер, и приемы работы с ними относительно просты. Как правило, для жизнеобеспечения микроорганизмов требуются умеренные температура, давление и кислотность среды. Поэтому микробы – идеальные кандидаты для разработки новых экологически чистых технологий, взамен прежних процессов, где часто применяются высокие температуры, давление и агрессивные среды.

Многие микроорганизмы вырабатывают неорганические вещества, которые представляют интерес для материаловедов. Некоторые микроорганизмы способны усваивать соединения металлов и затем в процессе биосинтеза накапливать металл в виде структур со строгой пространственной конфигурацией. В 1999 г. была опубликована статья группы исследователей из Университета города Упсала (Швеция), в которой описан биосинтез кристаллов солей серебра бактериями Pseudomonas stutzeri штамма AG259. Этот вид бактерий обитает на месторождениях серебряных руд. В процессе метаболизма между цитоплазматической мембраной и клеточной стенкой бактерий образуются кристаллы солей серебра размером до 200 нм (рис. 4.2э43). Было показано, что бактерии способны образовывать не менее трех различных типов кристаллов с четкой пространственной структурой. Ученые предполагают, что, изменяя условия культивирования бактерий, можно будет синтезировать кристаллы с заданными параметрами. Возможность получать микрокристаллы серебра размером несколько нанометров чрезвычайно важна для микроэлектроники. Искусственное получение подобных микрокристаллов отличается малой производительностью при высоких затратах.

Рис. 4.2.43. Электронная микрофотография тонкого среза клеток P. stutzeri AG259. Видны крупные кристаллические частицы Ag и Ag2S, заключенные между клеточной стенкой и цитоплазматической мембраной.

Таким образом, применение микроорганизмов способно существенно упростить разработку новых материалов, так как именно микроскопическое строение материала в конечном счете определяет его свойства.