
- •Высшего профессионального образования
- •Высшая математика
- •Г. Набережные Челны
- •1.Цель и задачи дисциплины, её место в учебном процессе.
- •Задачи изучения дисциплины. Требования к знаниям и умениям студента.
- •2. Содержание и структура дисциплины.
- •2.1 Содержание дисциплины (наименование и номера тем).
- •Раздел II. Векторная алгебра
- •Тема 4. Векторная алгебра.
- •Раздел III. Аналитическая геометрия
- •Тема 5. Прямые линии и плоскости.
- •Тема 6. Кривые и поверхности второго порядка
- •Раздел IV. Введение в математический анализ.
- •Тема 7. Функциональная зависимость.
- •Тема 8. Предел функции. Сравнение бм функций. Эквивалентные бм функции.
- •Тема 9. Непрерывность функции.
- •Раздел V. Комплексные числа и многочлены.
- •Тема 10. Комплексные числа и многочлены.
- •2.2. Практические занятия, их содержание.
- •2.3. Виды самостоятельной работы студентов.
- •3. Рекомендуемая литература. Основная литература:
- •Дополнительная литература:
- •4. Методические указания по изучению дисциплины.
- •5. Материалы для контроля знаний студентов.
- •5.1. Задания для контрольной работы.
- •5.2. Вопросы к экзамену.
- •Раздел I. Линейная алгебра.
- •Раздел II. Векторная алгебра.
- •Раздел III. Аналитическая геометрия.
- •Раздел IV. Введение в анализ.
- •Раздел V. Комплексные числа. Алгебра многочленов.
- •6. Приложения.
- •6.1. Образец решения контрольных задач типового варианта.
- •6.2. Краткие теоретические сведения.
- •Тема 1. Определители.
- •Тема 2. Матрицы.
- •Тема 3. Системы линейных уравнений.
- •Тема 4. Векторная алгебра.
- •Тема 5. Прямые линии и плоскости.
- •Тема 6. Кривые второго порядка.
- •Тема 7. Множества. Числовые множества. Функция.
- •Тема 8. Предел функции. Эквивалентные функции.
- •Тема 9. Непрерывность функции.
- •Тема 10. Комплексные числа и многочлены.
- •6.3 Образец оформления обложки с контрольной работой. Федеральное агентство по образованию Государственное образовательное учреждение
- •«Камская государственная инженерно-экономическая академия»
- •Набережные Челны
5.2. Вопросы к экзамену.
Раздел I. Линейная алгебра.
-
Понятие матрицы. Частные виды матриц (квадратная, треугольная, диагональная, нулевая, единичная). Элементарные преобразования матриц. Понятие эквивалентности и равенства матриц.
-
Действия над матрицами (сложение, вычитание, умножение матрицы на число, умножение матрицы на матрицу) и их свойства. Линейная комбинация матриц.
-
Определители 2-ого и 3-его порядка, их вычисление. Основные свойства определителей.
-
Понятие определителя n-ого порядка. Минор и алгебраическое дополнение элемента определителя. Теорема о разложении определителя по элементам строки или столбца.
-
Понятие системы линейных уравнений (СЛУ). Частные виды СЛУ (квадратная, однородная, неоднородная). Матрица, расширенная матрица, определитель СЛУ.
-
Решение, множество решений СЛУ. Совместность, несовместность, определённость, неопределённость, эквивалентность СЛУ. Элементарные преобразования СЛУ, их основное свойство.
-
Формулы Крамера для решения СЛУ, условия их применимости.
-
Минор
-ого порядка, базисный минор, ранг матрицы. Вычисление ранга матрицы. Критерий совместности СЛУ (теорема Кронеккера-Капелли).
-
Метод Гаусса решения СЛУ, условия его применимости. Условия несовместности, определённости и неопределённости СЛУ по методу Гаусса.
-
Преобразования СЛУ, выполняемые при выполнении прямого и обратного ходов метода Гаусса. Базисные и свободные переменные. Нахождение общего решения СЛУ.
-
Понятие обратной матрицы. Вырожденные и невырожденные матрицы. Теорема о существовании обратной матрицы. Основные способы нахождения обратной матрицы.
-
Матричные уравнения и их решение. Матричная форма записи СЛУ. Матричный способ (метод обратной матрицы) решения СЛУ и условия его применимости.
-
Однородные СЛУ, условия существования их ненулевых решений.
Раздел II. Векторная алгебра.
-
Понятие геометрического вектора. Равенство векторов. Противоположный вектор. Орт вектора. Графические правила сложения, вычитания, умножения вектора на число. Проекция вектора на вектор.
-
Коллинеарность и компланарность векторов. Базис плоскости
; базис пространства
. Координаты вектора.
-
Понятие декартовой системы координат в
. Радиус-вектор, координаты точки. Вычисление длины и направляющих косинусов вектора; координат вектора, заданного двумя точками; расстояния между точками.
-
Преобразования прямоугольных декартовых систем координат на плоскости (параллельный перенос, поворот). Связь между собой координат произвольной точки в старой и новой системах координат.
-
Скалярное произведение векторов и его свойства. Выражение скалярного произведения через координаты векторов. Вычисление угла между векторами. Условие ортогональности векторов.
-
Векторное произведение векторов, его геометрический смысл и свойства. Выражение векторного произведения через координаты векторов. Условие коллинеарности векторов.
-
Смешанное произведение векторов, его геометрический смысл и свойства. Выражение смешанного произведения через координаты векторов. Условие компланарности векторов.