
- •Методика:
- •Цели обучения математике. Иерархия в установлении образовательных, воспитательных и развивающих целей учебного процесса.
- •Анализ и синтез; индукция и дедукция; наблюдение, сравнение и аналогия; систематизация, обобщение и конкретизация. Многоаспектность их проявления в обучении математики.
- •Обучение математическим понятиям. Методика введения и формирования понятий.
- •Методика работы с теоремой.
- •Задачи в обучении математике. Методические требования к системе задач по теме.
- •Профильная и уровневая дифференциация.
- •Методика изучения натуральных чисел.
- •Методика изучения рациональных чисел.
- •9.Методика изучения действительных чисел.
- •10. Методик изучения уравнений и неравенств в школьном курсе математики.
- •11. Алгоритм в школьном курсе.
- •12. Системы уравнений и неравенств. Методика их изучения.
- •13. Понятие функции в школьном курсе математики.
- •14. Методика изучения линейной функции.
- •15. Методика изучения квадратичной функции.
- •16. Методика изучения показательной и логарифмической функции.
- •17. Методика изучения степенной функции.
- •18. Производная. Исследование функции и построение графика.
- •19. Интеграл в школьном курсе.
- •20. Проблемы построения школьного курса геометрии.
- •21. Геометрические построения на плоскости и в пространстве.
- •22. Геометрические преобразования в школьном курсе геометрии.
- •23. Параллельность прямых и плоскостей на плоскости и в пространстве.
- •24. Методика изучения темы «Многоугольники».
- •25. Перпендикулярность прямых и плоскостей на плоскости и в пространстве.
- •26. Методика изучения темы «Многогранники».
- •27. Тела вращения.
- •28. Векторы на плоскости и в пространстве.
- •29. Кординаты на плоскости и в пространстве.
- •30. Геометрические величины (длины, углы, площади, объемы).
9.Методика изучения действительных чисел.
В середине 19 в. было выполнено построение эквив-й теории действ-го числа
Рас-рим систему построения мн-ва действ. чисел по Дедекинду (сущ. еще по Кантору). В основе рассуждений лежит понятие о сечении в области рац. чисел. Сечением наз-ют разбиение мн-ва рац. чисел на два непустых класса ( В и В' так, что: 1) каждое рац. число попадает в одно и только одно из мн-в В и В'; 2) каждое число, вошедшее во мн-во В, меньше каждого числа из мн-ва В'. Мн-ва В и В' наз-ся соотв. нижним и верхним классами сечения. Оказ-ся, что на мн-ве рац. чисел сущ. только 3 вида сечений: а) во мн-ве В нет последнего (наиб.), а во мн-ве В' есть нач-ное (наим.) число. Именно наличие во мн-ве рац. чисел сечений 3 вида (т.е. отсутствие в нек-ых случаях в этом мн-ве пограничного числа) свидетельствует о неполноте этого мн-ва и служит основанием для введения новых чисел-иррац.. Сечение 3 рода определяет нек-ое иррац. число, заменяющее недостающее пограничное число, т.е. это число как бы вставляется между всеми числами мн-ва. Рац. и иррац. числа получили общее название дейсв-х (вещественных) чисел..На корд-й прямой сущ. точки, к-ым не соотв. никакие числа из мн-ва рац. чисел: мн-во рац. чисел несвязно. Оказ-ся, что мн-во действ-х чисел явл. непрерывным. Во мн-ве действ. чисел сущ. только сечения 1и 2 вида; это и свидетельствует о непр-ти этого мн-ва. Мн-во R в школьных учебниках появл-ся в 8-9 классах (чаще в 8). Мн-во дейст. чисел в физ-мат классах можно построить как теорию бескон. дес. дробей. До 80-го г. в уч-ках Алгебра и начала анализа Колмогорова в курсе 9 класса предлагалась теория действ-го числа как мн-во беск. дес. дробей (целая глава).
10. Методик изучения уравнений и неравенств в школьном курсе математики.
В
школе наблюдается тенденция к более
раннему систематическому изучению
уравнений,неравенств.(программа 1968г)Эта
тенденция продолжена и в программе
1985г.Линия уравнений проходит практически
с 1-11кл.1-6кл.-лин.ур.(Ур.1-ой
степени),7-8кл.-квадратич.ур,биквадр.(Ур.высших
степеней где можно разложить на
множители),10-11кл.-показат,степен,логарифмич,тригонометрич.ур(нерав);линейные
неравенства с одним неизвестным,их
сис-мы,неравенства 2-ой степени,рациональные
неравен.,метод интервалов-9кл.Изложение
теоретических сведений об Ур.и нер.
Зависит от содержания и последовательности
изучения других тем школьного курса
алгебры:дейст.чисел,тождественных
преобразований выражений.1.В
нач.кл.рассм.след.линейные уравнения:и
т.д.Неизвестное число сначала находят
подбором,затем используя связи между
результатом и компонентами
арифметич.действий.(1-й пример:чтобы
найти неизв.,необход.от суммы отнять
извес.слагаемое)-3кл.В1-ом кл.7 +□=10-метод
подбора.В нач.кл.неравенства решаются
подбором,причем в большинстве случаев
огранич.нахождением лишь части решений
неравенства.2.5кл.
Ур.реш.также на основе зависимости между
результатом и компонентами
арифметич.действий,при этом часто
предварительно проводится упрощение
выражений.Уч.знакомятся с применением
распределит.закона умножения(
),в
процессе изуч.десятичных дробей
расс.ур.вида
.В
5кл.встречаются лишь отд.примеры
неравенств(решают подбором).3.В
6кл. при изуч.положит.иотриц.чисел
рассм.новые примеры линейных
Ур.,встреч.нелинейн.ур.На основании
опред.противополож.чисел решаются
Ур.
.,На
основ.опред.модуля числа-
.В
6кл. уч.знакомятся с тождественными
преобр.(раскрытие скобок),решаются Ур.с
равенством нулю,уч.знакомятся с правилом
переноса слагаемого в др.сторону.4.В
7кл.систематизируются сведения о решении
лин.ур.Существенным шагом явл.введение
понятия равносильных уравн. Методы
решения иррац.ур.(возведение в квадрат
с проверкой,реш.подстановкой.Показ.и
логариф.ур.(на основании свойств степеней
и логарифмов;вынесение общего множителя
за скобки,заменой.).Большинство приемов
решения нерав. Состоит в переходе от
к
и последующем переходе от найденных
корней Ур.к мно-ву реш.исходного нер-ва.В
старших классах он формализуется в виде
«метода интервалов».
Ур-ние – это рав-во, содерж-е неизв. число. Найденное неизв. число-корень ур-ния. решить ур-ние значит найти все его корни.
Линия ур-ний проходит с 5 по 11 класс:
1-6 кл. – лин. ур-ния (1 степени)
7-8 кл. – квадр. ур-ние
9 кл. – биквадр. ур-ния
10-11 кл. – показ., степ., лог.. тригон. ур-ния.
Линия нер-в:
7-8 кл. – числ. нер-ва
9 кл. – лин. нер-ва с одним неизв.,сист. лин. нер-в, нер-ва 2 степени, рац. нер-ва, метод интегралов
10 кл. – тригон. нер-ва
11 кл. – показ., лог. нер-ва.
Изложение теор. сведений об ур-ниях и нер-вах зав. от содержания и посл-ти изуч-я др. тем школьного курса алгебры: действ. чисел, тожд. преобразований выражений, ф-ций, начал мат. анализа, к-ые не могут получить систем-ое изложение без ур-ний и нер-в. Выбор опред. сочетания линий ур-ний и нер-в с др. линиями явл. ключом к опред. общей структуры курса.
МЕТОДЫ РЕШ-Я УР-НИЙ И НЕР-В:
1)
в нач. классах рас-ся лин. ур-ния исп.
метод подбора (чтобы найти неизв.
слагаемое необх. из суммы отнять изв.
слагаемое).2) В 5 классе – также исп.
подбор, но предварительно ур-ние
упрощается. 3) В 6 классе на основании
определения противопол-х чисел реш-ся
ур-ние –х=607. На оснавании определения
модуля числа:
=94.
Применять пр-ло переноса слагаемого из
одной части ур-ния в др. 4) В 7 класса
показ-ся, что ур-ние 1 степени, явл. частным
лин. ур-нием. Вводится понятие равносильных
ур-ний. 5) В 11 класса вводится понятие
следствие: одно ур-ние следует из др.
(все реш-я одного явл. реш-ями др.).