
- •Модуль 1. Введение:
- •1.1. Программа курса "Основы общей экологии и неоэкологии"
- •1.2. Программная лекция 1.1 по модулю 1 "Введение"
- •1.3 Проблемная лекция 1.1 по модулю 1 "Введение: Актуализация понятий. Методы. Системы. Биосфера”
- •1.4 Проблемная лекция 1.2 по модулю 1 "Введение”: - Современная экологическая ситуация отдельных компонентов биосферы (элементы глобальной экологии; экологический императив)
- •Модуль 2.
- •2.1. Программная лекция 2.1. По модулю 2 "Основы традиционной экологии": Теоретическая экология. Круговороты
- •2.2. Проблемная лекуия 2.1. По модулю 2 "Основы традиционной экологии”: – Теоретическая экология. Круговороты.
- •2.3. Проблемная лекция 2.2. По модулю 2 “Основы традиционной экологии”: - Теоретическая экология: Процесс фотосинтеза.
- •2.4. Программная лекция 2.2. По модулю 2 "Основы традиционной экологии”: - Теоретическая экология: экологические условия, факторы, ресурсы, экологическая ниша
- •2.5. Проблемная лекция 2.3 по модулю 2 "Основы традиционной экологии”: - Теоретическая экология: Экологические условия, факторы, ресурсы, экологическая ниша
- •2.6. Программная лекция 2.3 по модулю 2 "Основы традиционной экологии” - Организмы
- •2.7. Проблемная лекция 2.4. По модулю 2 "Основы традиционной экологии”: - Организмы
- •2.7.1. Соответствие между организмами и изменяющейся средой.
- •2.7.2. Унитарные и модулярные организмы: их жизнь и смерть. Жизнь - как экологическое событие. Демографические процессы
- •2.8. Программная лекция 2.4. По модулю 2 "Основы традиционной экологии”: - Разнообразие и основные типы взаимодействия живых организмов
- •2.9. Проблемная лекция 2.4. По модулю 2 "Основы традиционной экологии”: - Разнообразие и основные типы взаимодействия живых организмов
- •2.10. Проблемная лекция 2.7 по модулю 2 “Основы традиционной экологии”: – "Жизненный цикл - как один из важнейших аспектов традиционной экологии"
- •3.4.2. Численность
- •2.11. Проблемная лекция по модулю 2 "Основы традиционной экологии”: - Сообщества
- •3.5.1. Видовое богатство сообщества
- •Содержание
- •Глобальное изменение и ключевые проблемы
- •Содержание
- •4.2.Проблемная лекция 4.1 по модулю 4 "Основы неоэкологии"- Концептуальные основы неоэкологии
- •4.2.1.Введение
- •4.2.2.Теоретико-методологические основы
- •Гипотезы, теории экологии
- •Основные экологические законы
- •6.1. Программная лекция 6.1. По модулю 6 "Основы неоэкологии: - Глобальные проблемы неоэкологии"
- •6.1. Проблемная лекция 6.1. По модулю 6 "основы неоэкологии" - глобальные проблемы неоэкологии.
- •6.1.1. Проблемы народонаселения и здоровья.
- •6.1.2. Проблемы воды
- •6.1.3. Проблемы воздуха
- •6.1.4. Проблемы землепользования и лесов
- •6.2.5. Проблемы промышленности, энергии и отходов
- •6.1.6. Проблемы транспорта и туризма
- •6.1.7. Проблемы наводнения, ураганов, засухи, антропогенных аварий
- •6.1.8. Проблемы войны и мира
- •6.1.9.Проблемы озона и изменения климата
- •6.1.9.1. Проблемы атмосферного озона и озоновых "дыр"
- •Общие сведения об озоне. Свойства
- •Содержание озона в атмосфере его распределение , колебания.
- •Влияние на озон различных химических веществ и их источников.
- •Механизм проникновения загрязнений в стратосферу
- •Роль стратосферного озона в формировании глобального климата планеты.
- •Источники образования тропосферного озона и его роль в формировании смогов.
- •Использование свойств озона
- •Меры, направленные и регулирование содержания озона в тропосфере и стратосфере
- •6.1.10 Проблема кислотных дождей.
- •Природные и антропогенные источники кислотных дождей
- •Основные соединения азота и их концентрации
- •Профилактические меры по защите
- •Среднегодовые и максимальные концентрации загрязняющих компонентов в атмосферном воздухе крупных городов Украины.
- •Модуль 7"Основы неоэкологии"-Проблемы экологической безопасности.
- •7.1. Програмная лекция 7.1 по модулю 7 "Основы неоэкологии":
- •Проблемы экологической безопасности.
- •7.2. Проблемная лекция 7.2. По модулю 7 "основы неоэкологии": - проблемы экологической безопасности
- •7.1.1. Агроэкологические проблемы. Агроэкология
- •7.1.2. Проблемы шумового загрязнения. Акустическая экология
- •Шкала уровня шума
- •7.1.3. Проблемы бытовых отходов
- •7.1.4. Проблемы пылевого загрязнения
- •7.1.5. Проблемы физического загрязнения (электомагнитное в т.Ч. Радиационное, тепловое и световое) 7.1.5.1. Дефиниции понятий
- •7.1.5.2. Физические основы электромагнитного излучения.
- •Электромагнитное излучение
- •7.1.5.3.Элементы радио экологии. Ядерное излучение.
- •Ионизирующие излучения геосистем
- •Средняя концентрация радионуклидов космического происхождения в дождевой воде
- •Естественный радиационный фон геосистем
- •Технологически измененный естественный радиационный фон геосистем
- •Миграция радионуклидов в биосфере
- •7.1.5.4.Слабые электромагнитные излучения. Световое и тепловое загрязнение.
- •7.1.6. Некоторые другие проблемы экологической безопасности. Экологическая политика.
- •8.2.Проблемная лекция 8.1. По модулю 8 "Основы неоэкологии " Геоэкология как неотъемлемая часть неоэкологии; Загрязнения- основные понятия, классификация, последствия.
- •8.1.1. Обект и предмет геоекологии .
- •8.1.2. Принципиальные различия между экосистемой и геосистемой.
- •8.1.3.О понятиях геоэкосистема и комплексная эколого-экономическая система.
- •8.1.4.Понятие об амплитуде геосистемы и концепция ладшафтно-экологической ниши в геоэкологии.
- •8.1.5. Базовый понятийно-терминологический аппарат неоэкологии.
- •8.1.6. Миграция химических элементов. "Качество окружающей среды".
- •8.1.7 Механизм процесса загрязнения.
- •8.1.8 Пространственная структура загрязнений .
- •8.1.9 Воздействие загрязнений на живые организмы .
- •8.1.10.Отдельные положения, понятия, термины.
- •8.3.Прогамная лекция 8.2 по модулю 8 "Основы неоэкологии"- классификация и оценки загрязнений - индексы загрязнений.
- •8.4. Проблемная лекция 8.2. По модулю 8 "Основы неоэкологии"- классификации и оценки загрязнений - индексы загрязнений.
- •8.2.1.Классификация веществ загрязняющих атмосферу.
- •8.2.2 Индексы загрязнений.
- •8.2.2.1 Методика расчёта комплексного индекса загрязнения атмосферы на основе данных наблюдений.
- •8.2.2.2 Расчет индекса загрязнения воды (изв)
- •9.2.Проблемная лекция 9.2 по модулю 9 "Основы неоэкологии"- оценка воздейсвия на окружающую среду ( овос ).
- •9.1.1.Содержание овос.
- •А) идентификация воздействия.
- •Объекты и показатели категории воздействий
- •Б) оценка воздействия на окружающую среду
- •В) интерпретация результатов оценки
- •Г) представление результатов оценки.
- •9.3.Програмная лекция 9.2.По модулю 9. Контроль и управление качеством
- •9.4. Проблемная лекция 9.2. По модулю 9 "Основы неоэкологии" - Контроль и управление качеством природной среды. 9.2.1. Общие положения.
- •9.2.2. Контроль и управление качеством атмосферного воздуха.
- •9.2.3. Понятие об эффекте суммации.
- •9.2.4. Контроль и управление качеством воды
- •9.2.5. Нормативные и прочие требования
- •9.2.7. Понятия об экологическом мониторинге.
- •9.2.8. Критерий экологического риска – альтернатива пдк.
- •9.2.9. Схема управления экологическим состоянием города и других территорий.
- •10.1.2. Проблемы загрязнения воздушного бассейна
- •10.1.3. Проблемы качества поверхностных и подземных вод
- •10.1.4. Проблемы сохранения земельных ресурсов
- •10.1.5. Проблемы сохранения биологических ресурсов
- •10.1.6. Проблемы природно-техногенной (экологической) безопасности
- •10.1.7. Проблемы трансграничного переноса загрязняющих веществ
- •10.1.8. Проблемы радиационной безопасности окружающей среды
- •10.1.9. Проблемы здоровья населения.
- •10.1.10. Первоочередные меры по стабилизации состояния окружающей среды
2.3. Проблемная лекция 2.2. По модулю 2 “Основы традиционной экологии”: - Теоретическая экология: Процесс фотосинтеза.
Некоторые исследователи считают, что существует целая наука о фотосинтезе. И это неудивительно, потому что продукция растительности на планете составляет от 50 до 250 млрд.сухой массы. Это отвечает приблизительно 70-365 млрд.т поглощенного углекислого газа и 50-270 млрд.т. выделенного кислорода в процессе фотосинтеза растений.
Термин "фотосинтез" принадлежит Пфефферу и появился он только в 1877 г. ,т.е. спустя 201 год после того как начались исследования этого процесса. Обозначает он "синтез на свету" или " синтез с помощью света".
Фотосинтез в общем понимании - это усвоение углекислого газа растениями и восстановление углерода до органических веществ с помощью поглощенной энергии света. Это чрезвычайно сложный процесс. Разнообразие промежуточных реакций настолько велико, что они до сих пор не раскрыты до конца. Еще не осуществлена мечта французского физика Ф.Жолио-Кюри, который утверждал, что настоящий переворот в энергетике состоится лишь тогда, когда мы сможем осуществить массовый синтез молекул хлорофилла и процесса фотосинтеза. Наряду с этим необходимо подчеркнуть, что при огромномнейшей роли фотосинтеза в образовании свободного кислорода, преобладающее количество последнего в земной атмосфере (около 99%) образуется не путем фотосинтеза. Главным источником его является разложение паров воды в верхних слоях атмосферы под действием ультрафиолетовых лучей (фотодиссоциация). Второй источник образования кислорода - из азота под действием космического излучения. Третий, менее важный путь - попадание ядер кислорода в атмосферу в виде компонентов космических лучей. Ближайшим аналогом фотосинтеза является разложение воды под действием ультрафиолетовых лучей ( в растении видимого света). Близким по природе к фотосинтезу растений в живой природе выступает хемосинтез, открытый С.М.Виноградским. Общей особенностью хемосинтеза для всех его видов является усвоение углекислоты и построение из нее органических веществ при помощи химических источников энергии. Эти процессы в отличие от фотосинтеза не зависят от наличия солнечного света.
Процесс фотосинтеза делится на 3 фазы: 1) фотофизическая - поглощение фотона света и перевод его энергии в возбужденное состояние электронов; 2) фотохимическая - переход энергии возбужденного состояния в энергию химических связей; 3)биохимическая - т.е. процессы преобразования органических веществ до образования конечных продуктов фотосинтеза. Реакции биохимической фазы происходят с участием ферментов и стимулируются температурой, поэтому эту фазу назвали термохимической. Чаще две первые фазы называют световыми, а биохимическую - темновой, потому что для нее свет уже необязателен. Более детально с процессом фотосинтеза необходимо ознакомиться по литературным источникам. Наиболее подробно весь процесс освещен в книге О.I.Мережко,I.М.Величко, "Таємниці зеленоі фабрики" К.Наукова думка, 1990. В ней детально рассматривается природа и механизмы фотосинтеза, пути его регулирования и интенсификации и т.д. Здесь отметим, что упрощенная формула фотосинтеза:
6 СО2 + 6Н2 О = С6 Н12 О6 + 6 О2
Важно знать о неэкономном расходовании в процессе фотосинтеза энергии и воды. Экспериментально установлено, что КПД фотосинтезирующей растительности (т.е. расхода энергии на синтез, биомассы к общему количеству приходящей солнечной энергии) очень невелик и обычно не превосходит 0,1-1%. В благоприятных условиях величины этого коэффициента повышается до нескольких процентов (Ничипорович, 1973).
Что касается водных ресурсов, то продуктивность транспирации (отношение прироста веса сухой биомассы растений к расходу воды на транспирацию за данный промежуток времени) обычно имеет величину от 1/200 до 1/1000 (чаще всего около 1/300). Это значит, что такая обильная транспирация не соответствует физиологическим потребностям растения и является в значительной мере бесполезным расходом воды (Максимов, 1926, 1944 и др.). Это два фундаментальных факта, указывающие на то, что в природных условиях растительный покров осваивает только незначительную часть имеющихся энергетических и водных ресурсов.
Каковы причины этого? т.е. каковы причины, которые столь существенно ограничивают использование природных ресурсов в синтезе биомассы?
Для этой цели необходимо обратиться к анализу механизма ассимиляции углекислоты и транспирации (Будыко, 1977г.).
Орган ассимиляции фотосинтезирующего растения - лист представляет собой футляр из плотной катикулярной ткани, пронизанной множеством малых отверстий - устьиц, которые могут открываться и закрываться. В этом футляре заключена весьма большая поверхность хлоропластов, содержащих зерна хлорофилла. Поверхность хлоропластов сообщается с атмосферным воздухом через межклеточники и устьица.
Весьма существенно, что для развития фотосинтеза поверхность хлоропластов должна поддерживаться в увлажненном состоянии, поскольку углекислота может ассимилировать только в виде раствора. Поэтому относительная влажность воздуха в межклеточниках велика и обычно значительно превышает относительную влажность в атмосферном воздухе.
Таким образом, диффузия углекислоты в лист с открытыми устьицами неизбежно сопровождается диффузией в обратном направлении водяного пара, т.е. транспирацией растения. Вот отсюда и такой огромный расход воды и всего другого.
Кроме этого необходима колоссальная энергия на поддержание разности температуры листа и воздуха в летних условиях. Обычно считают, что эта разность должна быть равной 5 град. Так вот при этой разности температура., а также при относительной влажности воздуха 50% и t воздуха = 20 град. получим затраты (по формулам) энергии на ассимиляцию.В средних условиях климата умеренных широт затраты могут достигать 8% радиационного баланса.
Установлено, что растения обычно используют только небольшую часть возможного диффузионного притока углекислоты (около 10%). В чем причина? В.Н.Любименко (1935) считает, что причина "не столько в малом содержании СО2 в атмосфере, сколько в недостаточно быстром темпе работы энзиматического аппарата, который управляет оттоком ассимилятов и их усвоением"(энзимы - катализаторы белковой природы, которые образуются в живых организмах. То же, что и ферменты).
Таким образом этот физический механизм ассимиляции и транспирации позволяет объяснить, почему растения так не экономно расходуют энергию и воду, т.е. фотосинтезирующую продуктивность растительности и продуктивность транспирации.
Общий вывод по механизму фотосинтеза согласнор М.И.Будыко(1977г.) Сводится к следующему:"Растительность обычно использует очень небольшую часть энергетических и водных ресурсов. Эта часть мала даже по сравнению с тем небольшим "КПД", который мог бы быть достигнут при наибольшей возможной диффузии углекислоты из воздуха. Полученные результаты расчетов указывают, что в случае полного использования атмосферной углекислоты растительность может усваивать не менее 5% поступающей солнечной энергии и что в этих условиях продуктивность транспирации должна равняться не нескольким тысячным ( как это обычно имеет место), а нескольким сотым. Поскольку в природных условиях таких высоких показателей эффективности фотосинтеза обычно не наблюдается, следует заключить, что продуктивность растения существенно ограничена метеорологическими факторами на разных уровнях растительного покрова (выше рассматривается механизм в однороданых условиях) т.е. особенностями фотосинтеза по вертикали".
Установлено, что в каждом слое растительности по вертикали основные параметры (осредненные)в отличие от приземного слоя воздуха: 1)так же потоки коротковолновой и длинноволновой радиации; 2) тепло; 3)водяной пар; 4) количества движения воздуха разные и существенно изменяются с высотой.При этом коротковолновая радиация убывает с приближенном к земной поверхности. Радиационный баланс также убывает в этом же направлении из-за экранирующего влияния растений.
Поток водяного пара в слое растительного покрова возрастает с высотой из-за транспирации, а (поток количества движения уменьшается вниз от верхней границы растительного покрова вследствие тормозящего действия растительности на движение воздуха (т.е. идет ослабление турбулентного движения по сравнению с более высокими слоями воздуха).
ФАР (фотосинтетически активная радиация) - является частью общего потока коротковолновой радиации, ограниченной длинами волн, в пределах которых радиация может использоваться в фотосинтезе. Ее величина примерно вдвое меньше значений коротковолновой радиации.
ДЫХАНИЕ РАСТЕНИЙ: В суммарном выражении дыхание - это процесс обратный фотосинтезу:
С6 Н12 О6 + 6О2 = 6СО2 + 6Н2 О + 674 ккал,
т.е. глюкоза разлагается до углекислого газа и воды с выделением энергии (1 моль глюкозы т.е. 180 г. ее выделяет 674 ккал. энергии). Дыхание занимает важное место в жизнедеятельности растений. В его процессе образуются разнообразные органические вещества, которые используются для синтеза белков и других важных соединений, а энергия - для разнообразных обменных реакций, полимеризации простейших соединений в длинные цепи и др.
Дыхание осуществляется преимущественно в митохондриях (от греч. "митос" - нитки, "хондрион" - зерно). Это протоплазменные включения, органели, имеющие размеры 0,2-7,0 мкм. В митохондриях синтезируется белок, но важнейшей их функцией в клетке, является все таки дыхание. Дыхательные реакции делятся на 2 ступени. Первая ступень - безкислородная, которая осуществляется еще вне метахондрии, вторая - преимущественно в кристах, т.е. внутри митахондрии. В результате дыхания образуется этиловый спирт и другие соединения, например уксусный альдегид, уксусная кислота, молочная кислота. Это процесс характерен для анаэробного дыхания.
В целом, белки одновременно разлагаются до органических кислот в процессе дыхания и снова синтезируются, что содействует их фенотиповой (соответственно к смене условий жизни) перестройке и генетической (соответственно до мутаций, что возникли), если они насыщают популяцию растений данного вида.