Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термодинамика Реальных Процессов.doc
Скачиваний:
108
Добавлен:
01.11.2018
Размер:
5.4 Mб
Скачать

3. Специфическая мера интенсивности силового

взаимодействия, или интенсиал.

Очередной важной характеристикой уравнения (31), смысл которой подлежит расшифровке, является величина Р. Как уже упоминалось, в частном случае эта величина представляет собой универсальную меру интенсивности силового взаимо­действия, или силу Рх , то есть служит фактором интенсивности, или интенсиалом. Поэтому и во всех остальных случаях вели­чина Ρ тоже должна выполнять роль интенсиала. Однако при­менительно к каждому конкретному экстенсору интенсиал при­обретает свою специфическую «окраску», включая специфи­ческую размерность, отличную от размерности Рх , и т.д. В этих условиях интенсиал является специфической мерой интенсив­ности силового взаимодействия между ансамблем и квантами вещества.

Специфичность, в частности, проявляется в том, что данный интенсиал избирательно воздействует только на сопряженное с ним вещество и не влияет на все остальные. Например, элек­трический потенциал способен воздействовать только на элек­трический заряд и безразличен к массе. В свою очередь, квадрат скорости воздействует на массу и оставляет в покое электри­ческий заряд.

Следовательно, каждый конкретный интенсиал служит спе­цифическим аналогом силы. Аналогом, но не самой силой, ибо единицей измерения силы является ньютон, а каждый интен­сиал, сопряженный с соответствующим веществом, имеет свою собственную специфическую размерность, отличную от размер­ности силы.

Для каждого конкретного вещества мера Ρ легко определя­ется из общего выражения (34), где известны экстенсоры и раз­мерность работы. Например, для упомянутых выше экстенсоров – массы m (кг), объема V3) и электрического заряда, или электриора, (Кл) интенсиалы имеют следующие раз­мерности:

[Pm] = Дж/кг = (Нм)/(Нс2/м) = м22 ;

[Pv] = Дж/м3 = (Нм)/м3 = Н/м2 ;

[P] = Дж/Кл = (ВАс)/Кл = (ВКл)/Кл = В .

Как видим, интенсиал применительно к массе имеет смысл квадрата скорости (Рm = 2), применительно к объему - давления (Рv = р) и применительно к электрическому заряду - электрического потенциала (Ρψ = φ). Произведение каждого из этих интенсиалов на изменение сопряженного с ним экстенсора дает соответствующую работу. Со всеми этими частными характеристиками различных явлений мы хорошо знакомы.

Кроме того, ранее мы убедились, что интенсиал Рх опреде­ляет силовое поведение вещества в процессе образования или распада ансамбля, то есть является мерой качества поведения вещества Ν5 применительно к ансамблю простых явлений. Сле­довательно, и все остальные частные интенсиалы также явля­ются каждый мерой качества поведения соответствующего вещества. Например, 2 - это мера качества поведения кинети­ческого вещества, φ - электрического и т.д. [ТРП, стр.95-96].

4. Универсальная мера количества силового поведения ансамбля, или энергия.

Следующей, самой важной характеристикой уравнения (31) служит мера U, играющая роль величины Ν4 в уравнениях (14) и (26).

Известно, что у любого правильно составленного уравнения все слагаемые имеют одинаковую размерность. Поэтому мера U тоже должна иметь размерность работы (Дж). Кроме того, мы знаем, что при образовании и распаде ансамбля совер­шаемая работа каким-то образом аккумулируется ансамблем и затем может вновь проявиться в виде работы. Иными словами, величина U определяет количество силового поведения, заклю­ченного в ансамбле. Перечисленными свойствами обладает хорошо известная мера, именуемая энергией.

Хотя работа и энергия имеют одну и ту же размерность, они по сути дела представляют собой совершенно различные харак­теристики. Работу можно назвать мерой количества поведения, обусловленного перемещением порций веществ в процессе обра­зования или распада ансамбля; когда процесс прекращается, тогда перемещения нет и работа равна нулю. Энергия - это мера количества поведения, которое накапливается в ансамбле в ходе его образования и совершения работы. Количественная связь между обоими этими видами поведения определяется уравнением (31).

Весьма примечательно - об этом свидетельствует непосред­ственный опыт, - что аккумулированная энергия обычно сохра­няет в ансамбле свою специфическую «окраску», сопряженную с «окраской» совершаемой работы, которая, в свою очередь определяется сортом подводимых или отводимых квантов ве­щества. Поэтому, как и в случае работы, требуется разли­чать кинетическую, электрическую и другие составляющие энер­гии; об исключениях из этого правила говорится ниже. Вместе с тем сама по себе мера U обладает предельной универсаль­ностью.

По своей универсальности энергия стоит на одном уровне и органически связана с такими характеристиками, как сила и перемещение. Поэтому сила есть универсальная мера качества поведения вещества, причем поведение проявляется в виде притяжения и отталкивания, а энергия - это универ­сальная мера количества силового поведения ансамбля, которое проявляется в удержании квантов друг подле друга. Следова­тельно, меру U можно назвать также энергией связи между квантами, заключенной в ансамбле.

Универсальность понятия энергии обусловлена еще и тем, что оно применимо не только ко всем разнородным простым ве­ществам, но и ко всем без исключения более сложным формам явлений. Это прямо вытекает из правила вхождения, согласно которому всякое сложное явление включает в себя более про­стые. Поэтому с помощью энергии можно оценивать количество примитивного силового поведения, заключенного в любом слож­ном явлении, включая общество и т.д. Разумеется, на сложном уровне наряду с силовой явления располагают также возмож­ностями использовать и другие, более совершенные формы пове­дения, для оценки количества которых впоследствии будет най­дена своя особая мера. Что же касается простого уровня, то на нем силовой примитив - это единственно возможный, един­ственно доступный для явления способ поведения, а энергия - единственная мера, определяющая количество этого поведения.

Весьма важно, что за спиной энергии, как и силы, всегда стоят свои особые вещества, которые цементируют ансамбль в единое целое. Однако энергия-мера и упомянутые вещества суть принципиально различные вещи. Поэтому энергию недо­пустимо отождествлять ни с веществом, ни с какими бы то ни было иными объектами или понятиями. Согласно ОТ, ника­кого другого смысла, кроме указанного - быть универсальной мерой количества поведения на уровне ансамбля простых явле­ний, - энергия не имеет и иметь не может.

В связи с приведенной здесь формулировкой понятия энер­гии необходимо обратить внимание на то разнообразие во взгля­дах и определениях, которое господствует в современной науке. Впервые понятие энергии возникло в механике. Намеки на это понятие содержатся уже в комментариях Филопона (VI в.) на труды Аристотеля - речь идет об «импето» [53, с.25]. В XVII в. Гюйгенсом, Лейбницем и другими кинетическая энер­гия, или «живая сила», была определена как произведение массы на квадрат скорости [53, с.94]; в XIX в. Кориолис испра­вил это выражение, введя в него множитель, равный одной вто­рой [53, с.95]. Так энергия оказалась связанной с кинети­ческими представлениями.

Примерно в тот же период формировалось понимание теп­лоты как движения внутренних частей тел (Бэкон, Кеплер). В частности, в 1752 г. Эйлер писал: «То, что теплота заключа­ется в некотором движении малых частиц тела, теперь уже достаточно ясно» [53, с.168]. Создание Кренигом, Клаузиусом, Максвеллом и другими кинетической теории теплоты [53, с.237] послужило основанием отождествлять энергию с теплотой (че­рез кинетическую энергию молекул).

Далее при анализе законов излучения абсолютно черного тела Планк ввел понятия кванта действия и квантов (порций) энергии, которые излучаются телом в окружающую среду [53, с.338]. Эти порции энергии были затем отождествлены с кван­тами света, или фотонами. В результате под энергией теперь часто понимают просто фотоны, или так называемое электро­магнитное поле.

Таким образом, в ходе исторического развития науки энер­гия превратилась в одну из наиболее трудно доступных для по­нимания категорий. Согласно традиционному мышлению, энер­гия есть одновременно кинетическая энергия, теплота, фотоны (свет), электромагнитные волны; ее принято выражать (а ино­гда и отождествлять) через массу, считать, что она порождается гравитацией, и т.д. В некоторых из имеющихся определений можно видеть явное отождествление энергии-меры с той сущ­ностью, которую эта мера призвана определять. Нечто похожее мы наблюдали ранее в случае определения понятия силы. Все это, конечно, не способствует выявлению истинного физического смысла понятия энергии.

Теперь должно быть совершенно ясно, что энергия - это универсальная мера (и только мера!) количества простого сило­вого поведения, заключенного в теле. Энергия сопоставляется с работой в уравнении (31) и измеряется в джоулях. Будучи мерой, энергия, как и всякая другая мера, предназначена для подстановки в расчетные формулы; фотоны в формулу не под­ставишь.

Подведем некоторые итоги. Перед нами стояла задача - определить физический смысл количественных мер, входящих в общее уравнение ансамбля простых явлений (26), и таким образом, избавившись от нулей, придать этому уравнению доступную для практического использования форму. Непосредственно глядя на уравнение (26) и готовый ансамбль, этого сде­лать было нельзя. Пришлось рассмотреть физический механизм (процесс) образования ансамбля из отдельных порций вещества. Такой подход представляется наиболее простым, наглядным и экономным из всех возможных. В ходе рассужде­ний логика привела к детальному ознакомлению с особен­ностями таких понятий, как универсальное и специфические взаимодействия, перемещение, сила и работа. На этом фунда­менте с помощью известных экстенсоров (см. формулу (27)) было выведено основное уравнение ОТ для ансамбля простых явлений (31), параллельно был уточнен смысл некоторых из упомянутых понятий, особенно это касается энергии. В резуль­тате такие количественные меры уравнения (26), как N4 и N5 , получили для ансамбля простых явлений конкретное выражение и толкование.

Предстоит дальнейшая расшифровка выведенного уравне­ния (31) и содержащихся в нем связей. Однако теперь в логику рассуждений целесообразно ввести весьма плодотворные поня­тия и методы, выработанные в течение последнего столетия в термодинамике [ТРП, стр.96-99].