Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
10. Коспект Лц СМФ.doc
Скачиваний:
96
Добавлен:
01.11.2018
Размер:
5.34 Mб
Скачать

Лекция 18. Точение и другие методы обработки металлов резанием.

План лекции: Резец и его геометрия, материал режущей части, износ, критерии затупления и стойкость; элементы режима резания: скорость, подача и глубина резания; силы и мощность резания; выбор оптимального режима резания.

Точение является наиболее распространенным методом механической обработки, поскольку большинство деталей машин имеют форму тел вращения. Главным движением в этом случае является вращение заготовки 2, а движением подачи - поступательное перемещение инструмента 1 относительно заготовки (см. рис.15.1,а). Инструментом при точении является резец, основные части и элементы которого приведены на рис.16.1. Он состоит из рабочей (режущей) части или головки и стержня или державки. Его основными элементами являются: передняя 6 и задние (главная 2 и вспомогательная 1) поверхности, главное 5 и вспомогательное 4 режущие лезвия (кромки) и вершина резца 3. Геометрией рабочей части резца, как и других режущих инструментов, называется совокупность всех конструктивных элементов (углов, величины и формы режущих кромок, формы передней и задних поверхностей, радиуса сопряжения режущих лезвий и пр.), позволяющих обеспечить процесс обработки металлов резанием. Его основой является режущий клин, взаимодействие которого с обрабатываемой деталью рассмотрено на предыдущей лекции. Отсюда следует, что все основные положения (определения), приведенные для резца, по существу будут справедливы и для других инструментов, поскольку для них, в сечении перпендикулярном режущему лезвию, будет также режущий клин, с той лишь разницей, что форма его поверхностей может быть другой (вогнутой, выпуклой и пр.)

Геометрия резца оказывает большое влияние на процесс резания. Так, увеличение переднего угла позволяет уменьшить силы резания и мощность, затрачиваемые на обработку материала. Слишком большое увеличение переднего угла приводит к поломке режущего инструмента. Без наличия заднего угла процесс резания вообще невозможен, а чрезмерное его увеличение приводит к снижению стойкости инструмента. При изучении геометрии резца необходимо обратить внимание на назначение каждого конструктивного элемента, на ту роль, которую выполняет он при резании. Основные геометрические параметры резца приведены на рис. 16.2. Для определения геометрии однолезвийных и многолезвийных инструментов необходимо изучить прежде всего исходные координатные плоскости (рис. 16.2): плоскость резания 4 - плоскость, проходящая через главное лезвие и вектор скорости и касательная к поверхности резания 2; основная плоскость 5 - плоскость, параллельная продольной и поперечной подачам и нормальная к вектору скорости резания, а следовательно и к плоскости резания; главная секущая поверхность 6 - плоскость, нормальная к проекции главного лезвия на основную плоскость. Различают также вспо- могательную секущую плоскость - плоскость, нормальную к проекции вспомогательного лез-вия на основную плоскость.

Углы резца при-нято обозначать следу-ющими буквами грече-ского алфавита

, и  опре-деляемые следующим образом (рис. 16.2): - задний угол, заключен-ный между главной задней поверхностью и плоскостью резания;

- передний угол, заключенный между передней поверхностью и плоскостью, перпендикулярной к плоскости резания и проходящей через режущую кромку;

- угол заострения, заключенный между передней и главной задней поверхностями;

 - угол резания, заключенный между передней поверхностью и плоскостью резания;

- главный угол в плане, заключенный между проекцией главного лезвия на основную плоскость и направлением продольной подачи;

- вспомогательный угол в плане, заключенный между проекцией вспомогательного лезвия на основную плоскость и направлением продольной подачи;

- угол при вершине, заключенный между проекциями главного и вспомогательного лезвий на основную плоскость.

 - угол наклона главного лезвия, заключенный между главным лезвием и нормалью к вектору скорости.

Углы и называются главными, поскольку они характеризуют рабочий клин инструмента; они измеряются в главной секущей плоскости и связаны между собой следующими зависимостями:

a + b + g = 900

(1)

d = a + b

(2)

d +g = 900

(3)

Если > 900, то угол условно называют отрицательным. Углы в плане  и измеряются в основной плоскости и связаны между собой зависимостью:

f + f1 + e = 1800

(4)

Угол  измеряется в плоскости резания и выбирается в зависимости от условий обработки: необходимости обеспечения заданного направления схода стружки, наличия на поверхности заготовки литейной корки и пр. Принято различать угол положительным, отрицательным и равным нулю (см. [5, рис. 8.4 на с. 62]).

Резец и его геометрические параметры подробно рассмотрены также в основных теоретических положениях к лабораторной работе N 8 [5, с. 59-63].

В качестве материала режущей части резца используются в основном инструментальные стали, металло- и минералокерамические твердые сплавы.

Углеродистые и легированные инструментальные стали (У10, У12А, ХВГ, 9ХС и др.) применяются для резцов только при обработке неметаллических материалов, поскольку их теплостойкость является невысокой.

Быстрорежущие стали (Р9К5, Р18, Р6М3 и др.) применяются для резцов, работающих в тяжелых условиях, при обработке по корке и труднообрабатываемых материалов (жаропрочных, нержавеющих и и т.п.).

Металлокерамические твердые сплавы подразделяют на три группы: вольфрамовые (ВК), титановольфрамовые (ТК) и титанотанталовольфрамовые (ТТК).

Сплавы группы ВК состоят из зерен карбида вольфрама, сцементированных кобальтом (ВК2, ВК6, ВК6В, ВК6М и т.д.). Цифра указывает на процентное содержание кобальта, остальное - карбид вольфрама, а буквы В и М в конце марки - на величину карбидных зерен, соответственно крупно- и мелкозернистых. Эти сплавы применяются для обработки чугуна, цветных сплавов, пластмасс.

Сплавы группы ТК состоят из зерен карбида вольфрама и титана, сцементированных кобальтом (Т5К10, Т15К12В и др.). Цифра после буквы Т указывает на процентное содержание карбидов титана, а после К - кобальта, остальное - карбид вольфрама. Эти сплавы применяются для обработки сталей и других вязких материалов.

Сплавы группы ТТК состоят из карбидов титана, тантала и вольфрама. Цифра после второй буквы Т обозначает процентное содержание карбидов вольфрама и тантала в сумме. Стойкость резцов из этого сплава в 3,5 раза выше, чем из Р18. Они особенно хороши для обработки труднообрабатываемых жаропрочных сплавов.

Минералокерамические твердые сплавы обладают высокой теплостойкостью (12000С), но низким пределом прочности при изгибе. Они позволяют обрабатывать материалы со значительно большими скоростями резания при небольших сечениях срез и отсутствии вибраций. Лучшей маркой отечественной минералокерамики является сплав ЦМ-332. Для повышения его прочности в сплав добавляют тугоплавкие металлы. Такие сплавы называют керметами, они используются при обработке труднообрабатываемых материалов.

Износ резца зависит от условий обработки и по своей физической природе может быть абразивным, адгезионным и диффузионным. Абразивный износ обусловлен наличием в обрабатываемом материале достаточно твердых составляющих (карбидов, оксидов и пр.), сохраняющих значительную твердость и при нагревании. Они действуют как абразивы, царапая поверхности трения.

Адгезионный износ проявляется при более высоких скоростях резания и больших давлениях и сопровождается схватыванием материала инструмента с материалом заготовки под действием атомарных сил. При этом частички инструментального материала беспрерывно вырываются и уносятся сходящей стружкой и обрабатываемой заготовкой.

Диффузионный износ проявляется при высоких скоростях резания, когда развивается высокая температура, инструментальный материал интенсивно изнашивается под действием диффузии. Происходит взаимное проникновение и растворение структурных составляющих инструментального и обрабатываемого материалов. Интенсивной диффузии благоприятствует то, что в контакт с инструментом беспрерывно вступают все новые участки обрабатываемого материала и стружки. При определенных условиях обработки возникает так называемый окислительный износ, когда постоянно образующаяся на поверхностях инструмента окисная пленка периодически отрывается и уносится стружкой и обрабатываемой заготовкой.

Критерии затупления резца: при черновой обработке принимается износ по задней поверхности резца, равный 0,8-1,0 мм

- для стали и 1,4-1,7 мм - для чугуна; при чистовой обработке принимается технологический, когда превышение износа приводит к тому, что точность и шероховатость обработанной поверхности перестают удовлетворять техническим условиям на изготовление детали.

Стойкостью резца называют время его работы между переточками при определенном режиме резания. Значения стойкости приведены в справочниках. Так, для резцов из быстрорежущей части она составляет 30-60 мин, а из твердых сплавов - 45-90 мин.

Элементами режима резания при точении являются глубина и скорость резания и подача. Иногда к ним относят элементы сечения среза: ширину, толщину и площадь. При этом глубину резания, подачу и число оборотов заготовки называют технологическими элементами режима резания при точении (они непосредственно устанавливаются на станке), а скорость резания, ширину, толщину и площадь среза - физическими, поскольку они служат для обоснования выбора технологических элементов исходя из физической сущности процесса резания. при точении: скорость, подача и глубина резания; силы и мощность резания; выбор оптимального режима резания. Между технологическими и физическими элементами режима резания существуют соответствующие зависимости.

Рассмотрим элементы режима резания и сечение срезаемого слоя при продольном точении цилиндрической поверхности (рис.16.3).

Глубиной резания t называют толщину слоя металла, снимаемого за один проход

t = (D-d)/2, мм,

где D и d – диа-метры заготов-ки и обработа-нной поверхно-сти соответст-венно, мм.

Скоростью резания V упро-щенно называ-ют скорость главного движения, представляющую собой путь точки поверхности заготовки относительно режущей кромки резца в единицу времени:

V = pDn/1000, м/мин,

где n - частота вращения заготовки, об/мин. Подача s - путь резца пройденный за один оборот детали, мм/об. Шириной срезаемого слоя b называют расстояние между обрабатываемой и обработанной поверхностями, измеренное по поверхности резания

b = t/sin, мм.

Толщиной срезаемого слоя а называют расстояние между двумя положениями поверхности резания или главной режущей кромки за один оборот детали

а = s sin, мм.

Сила резания при точении R представляет собой равнодействующую всех сил, действующих на резец и может быть определена из выражения

где Pz, Py, Px - соответственно тангенциальная, радиальная и осевая составляющие силы резания.

По составляющей силы Рz определяют мощность резания. Поэтому ее называют главной составляющей силы резания или просто силой резания. Составляющие Pz, Py и Px так относятся друг к другу, как 1 : 0,4 : 0,2.

Силу Рz при точении определяют по следующей эмпирической формуле

PZ=CpZ tXp SYp KPz , H

где Срz - коэффициент, зависящий от свойств обрабатываемого материала; Крz - обобщенный поправочный коэффициент на измененные условия обработки в сравнении с теми, для которых дано значение Срz.

Значение Срz,Крz,xp,yp,zp для различных материалов и конкретных условий обработки приведены в справочниках. Тогда мощность резания определяется по формуле

Ne = PzV/60.103 кВт.

Мощность электродвигателя станка должна быть на менее Nэ, определяемой по формуле

Nэ = Ne/h,

h- к.п.д. станка, равный 0,7-0,8.

Выбор оптимального режима резания производят в следующей последовательности. Вначале выбирают глубину резания t, стремясь весь припуск снять за один проход. Затем выбирают подачу S исходя из требований к точности и шероховатости обработанной поверхности. При этом необходимо учитывать режущие свойства материала инструмента, мощность станка, жесткость детали и всей системы СПИД (станок- приспособление- инструмент- деталь).

После этого определяют скорость резания, допускаемую заданной стойкостью резца, по формуле

где К - общий поправочный коэффициент, учитывающий измененные условия резания в сравнении с теми, для которых даны значения Сv, Xv, Yv, приведенных в справочниках.

Определив скорость резания, находят частоту вращения шпинделя станка, соответствующую этой скорости резания, об/мин:

n = 1000V/pD.

Если станок такой частоты не имеет, то берут ближайшую мень­шую. Такой порядок определения оптимального режима резания объясняется потому, что глубина резания оказывает наименьшее влияние на процесс резания, а скорость резания, наоборот, оказывает наибольшее влияние. Поэтому, если мощность резания оказалась больше мощности станка, то уменьшение режима резания начинают с элемента, оказывающего наибольшее значение, т.е. со скорости резания.

Сверление является одним из самых распространенных методов образования отверстий в сплошном материале с помощью сверл на сверлильных и токарных станках. В первом случае главное движение и движение подачи сообщается сверлу, во втором - главным движением является вращение заготовки, а движением подачи - перемещение сверла вдоль оси. Чтобы получить более точные отверстия, после сверления их необходимо зенкеровать, растачивать или развертывать. Все эти операции можно выполнять как на сверлильных, так и на токарных станках. Основные схемы обработки отверстий приведены на рис. 16.4, где а - сверление, б - рассверливание, в - зенкерование, г-д - растачивание, е - развертывание, ж - зенкование, з-и - цекование, к - нарезание резьбы.

Геометрию сверла, а также основные элементы режима резания при свер-лении можно опре-делить по аналогии с точением. Фре-зерование- процесс обработки резани-ем, при котором режущий инстру-мент - фреза - совершает главное вращательное движение, а обрабатываемая заготовка - поступательное или вращательное движение подачи. Фрезерование является одним из наиболее производительных и распространенных методов обработки резанием.

Шлифование - процесс обработки поверхностей абразивными инструментами, чаще всего шлифовальными кругами. Абразивный инструмент состоит из зерен абразивного материала, связанных между собой специальной связкой. Применяется шлифование в большинстве случаев для окончательной чистовой обработки и является основным методом получения высокой точности и низкой шероховатости поверхностей. Шлифовать можно как очень мягкие, так и чрезвычайно твердые материалы различной формы. Основными характеристиками абразивного инструмента являются его зернистость, твердость, связка и структура.

Зернистость определяется размером зерен, определяемых размерами двух смежных применяемых для анализа контрольных сит. Номер зернистости обозначает размер в сотых долях миллиметра ячейки сита, на котором основная фракция задерживается.

Связка обеспечивает соединение абразивных зерен в одно целое. На практике наибольшее применение получили керамическая (неорганическая), а также бакелитовая и вулканитовая (органические) связки.

Твердостью абразивного круга называют сопротивление связки вырыванию абразивных зерен внешней силой. Они делятся на мягкие (М), средние (С) ... чрезвычайно твердые (ЧТ). В круге повышенной твердости затупившиеся зерна продолжают удерживаться, что нарушает нормальную его работу, приводит к его засаливанию и появлению прижогов на шлифуемой поверхности. В круге пониженной твердости зерна, не потерявшие своей остроты, преждевременно вырываются, что приводит к чрезмерному износу и потере формы круга. При обработке твердых материалов абразивные зерна изнашиваются более интенсивно и во избежание засаливания круга его надо выбирать более мягким. При обработке мягких материалов - наоборот. Следовательно, чем мягче обрабатываемый материал, тем тверже выбирается круг, и наоборот, т.е. должно осуществляться самозатачивание круга.

Структурой абразивного инструмента называют объемное соотношение зерен, связки и пор.

Маркировка шлифовального круга включает основные их характеристики. Например, маркировка Э40СМ2К5; ПП250х16х35; 35 м/c означает, что круг изготовлен из электрокорунда, имеет зернистость N 40, твердость СМ2, керамическую связку (К), структуру N 5, плоскую форму прямого профиля размером 250х16х35 мм и допускаемую скорость вращения 35 м/с.