
- •I. Теория сигналов.
- •1.1. Классификация сигналов.
- •1.2. Амплитудно - временные параметры детерминированных сигналов.
- •1.3 Спектральный анализ и синтез детерминированных сигналов.
- •1.3.1. Элементы обобщенной спектральной теории сигналов.
- •1.3.2. Примеры базисных функций и полиномов.
- •1.3.3. Спектральный анализ сигналов.
- •1.3.4. Особенности спектрального представления непериодических сигналов .
- •1.3.5. Исследование сигналов с помощью преобразований Лапласа.
- •1.4. Ортогональные разложения Котельникова для непрерывных
- •1.4.1. Сигналы с ограниченными и полосовыми спектрами.
- •1.4.2. Сигналы с полосовыми спектрами.
- •1.4.3. Теорема отсчетов в частотной области.
- •1.5. Корреляция и спектральные характеристики случайных сигналов и помех.
- •1.5.1. Корреляционные функции.
- •1.5.2. Экспериментальная оценка характеристик случайных сигналов.
- •1.5.3. Эргодичность сигналов.
- •1.5.4. Преобразования Хинчина - Винера.
- •1.6. Модели случайных сигналов и помех.
- •1.6.1. Телеграфный сигнал.
- •1.6.2. Белый шум.
- •1.6.3. Гауссовский процесс.
- •1.6.4. Гауссовский белый шум.
- •1.7. Узкополосные и аналитические сигналы.
- •1.7.1. Определение узкополосного процесса.
- •1.7.2.Формы математических моделей.
- •1.7.3. Аналитические сигналы.
- •1.7.4. Условие ортогональности сигналов в усиленном смысле.
- •1.7.5. Корреляционная функция узкополосного процесса.
- •1.8. Выводы.
- •Управление информационными параметрами сигналов.
- •1.9. Классификация методов модуляции.
- •1.10. Корреляционные и спектральные характеристики модулированных сигналов.
- •1.11. Выводы.
- •2. Прохождение сигналов через линейные цепи с постоянными параметрами.
- •2.1. Определение линейной цепи. Добавить параметры и спектры модулированных сигналов.
- •2.2. Дельта - функция - как пример пробного сигнала.
- •2.3. Временной и спектральный методы анализа передачи сигналов через линейные цепи.
- •2.4. Особенности анализа радиосигналов в избирательных цепях.
- •Эквивалентные схемы четырехполюсников.
- •Характеристические параметры четырехполюсников.
- •3.2. Характеристики линейных активных четырехполюсников.
- •3.3. Транзисторный усилитель - как пример активного линейного четырехполюсника.
- •3.4. Частотные свойства усилителей.
- •3.5. Свойства и характеристики активных линейных цепей с обратной связью.
- •1. Последовательная обратная связь по току.
- •2. Параллельная обратная связь по напряжению.
- •3. Последовательная обратная связь по напряжению.
- •4. Параллельная ос по току.
- •В) Устойчивость линейных активных цепей с обратной связью.
- •1. Алгебраический критерий устойчивости.
- •2. Частотный критерий устойчивости ( критерий Найквиста).
- •Генерирование колебаний в электрических цепях
- •Автоколебательная система - устройство с ос.
- •Самовозбуждение lc - автогенератора гармонических колебаний.
- •Анализ стационарного режима автогенератора методом гармонической линеаризации
- •4.4 Графический метод анализа стационарного режима.
- •Анализ автоколебаний методом уравнений состояния
- •5. Анализ нелинейных цепей
- •5.1. Общие понятия об элементах нелинейных цепей
- •5.2. Модели нелинейных элементов
- •5.2.2 Безынерционные нелинейные четырехполюсники
- •5.2.3. Нелинейная емкость
- •5.2.4. Нелинейная индуктивность.
- •5.3. Аналог цепей с безынерционными элементами
- •5.3.1. Общие сведения
- •5.3.2. Графический метод анализа
- •5.3.3. Графоаналитический метод
- •5.3.4. Численные методы
- •5.4. Преобразование спектров сигналов в нелинейных цепях и его практическое применение.
- •5.4.1. Общие положения
- •5.4.2. Умножение частоты
- •5.4. Амплитудная модуляция
- •5.5. Детектирование ам-колебаний
- •6. Анализ параметрических цепей
- •5.1. Общие понятия о параметрических цепях
- •6.2. Импульсная характеристика и передаточная функция параметрической цепи
- •6.3. Энергетика цепей с параметрическими реактивными элементами
- •6.4. Параметрический резонанс.
- •6.5. Баланс мощностей в параметрических цепях.
- •6.6. Параметрические усилители
- •7. Фильтрация сигналов на фоне помех.
- •7.1. Задачи и методы фильтрации
- •7.2. Согласованная фильтрация заданного сигнала
- •7.2.1. Методика анализа.
- •7.2.2 Импульсная характеристика согласованного фильтра. Физическая осуществимость.
- •7.2.3. Сигнал и помеха на выходе согласованного фильтра
- •8. Основы цифровой обработки сигналов
- •8.1.Основные понятия
- •8.2.Спектр дискретного сигнала
- •С пектральная плотность периодической функции
- •8.3.Алгоритм быстрого преобразования Фурье
- •8.4. Временные и спектральные методы исследования линейных стационарных цифровых фильтров.
- •8.5. Использование z-преобразования в теории стационарных линейных цифровых фильтров.
- •8.6. Основы реализации цифровых фильтров.
- •8.7. Синтез цифровых фильтров.
- •8.7.1. Синтез по заданной импульсной характеристики аналогового прототипа g(t).
- •8.7.2. Синтез цф по заданной частотной характеристике ќ(ω) (или операторного коэффициента передачи k(p)).
- •8.8. Учет погрешности цифровой фильтрации из-за квантования сигнала по уровням.
- •8.9. Выводы.
5.2. Модели нелинейных элементов
.
Одна из форм ВАХ может быть, например,
такой (см. рис.).
Определить нелинейный резистивный элемент - значит задать его вольтамперную характеристику полностью. В каждой точке ВАХ, заданной конкретным значением напряжения и тока U=U0, i=i(U0)=i0, можно ввести понятие статического сопротивления
и динамического (дифференциального) сопротивления, равного котангенсу угла наклона касательной к ВАХ в данной точке: (см. рис.)
Другим общим свойством резистивных НЭ является монотонность или немонотонность ВАХ.
Монотонность ВАХ играет особую роль при анализе цепей, поскольку при решении уравнений приходится оперировать зависимостями U=U(i) и наоборот i=i(U). Зависимость, обратная к монотонной, также монотонная и особых проблем при обращении не возникает. Для немонотонных зависимостей необходимо решать уравнения с многозначными функциями. Геометрически, обращение монотонной ВАХ соответствует симметричному отражению графика около биссектрисы первого - третьего квадрантов (см. рис.).
Реально в качестве резистивных НЭ используются диоды (1), варисторы (2), туннельные диоды (3), денисторы (4) (см. след. рис.).
5.2.2 Безынерционные нелинейные четырехполюсники
Четырехполюсники, на полюсах которых мгновенные значения токов и напряжений полностью задается функциями двух переменных х1 и х2, отражающих мгновенные значения токов и напряжений на других полюсах [F1(x1, x2), F2(x1, x2)], называют безынерционными нелинейными четырехполюсниками (см. рис.) (БНЧ).
или напряжений от токов:
либо уравнениям смешанного типа
Идеализированными моделями БНЧ являются управляемые источники с нелинейными коэффициентами передачи, например, идеализированная модель полевого транзистора (см. рис.), в которой зависимость тока стока от напряжения затвор-исток представляется некоторой линейно функцией I(U) (iс =ic(Uзи)).