
- •I. Теория сигналов.
- •1.1. Классификация сигналов.
- •1.2. Амплитудно - временные параметры детерминированных сигналов.
- •1.3 Спектральный анализ и синтез детерминированных сигналов.
- •1.3.1. Элементы обобщенной спектральной теории сигналов.
- •1.3.2. Примеры базисных функций и полиномов.
- •1.3.3. Спектральный анализ сигналов.
- •1.3.4. Особенности спектрального представления непериодических сигналов .
- •1.3.5. Исследование сигналов с помощью преобразований Лапласа.
- •1.4. Ортогональные разложения Котельникова для непрерывных
- •1.4.1. Сигналы с ограниченными и полосовыми спектрами.
- •1.4.2. Сигналы с полосовыми спектрами.
- •1.4.3. Теорема отсчетов в частотной области.
- •1.5. Корреляция и спектральные характеристики случайных сигналов и помех.
- •1.5.1. Корреляционные функции.
- •1.5.2. Экспериментальная оценка характеристик случайных сигналов.
- •1.5.3. Эргодичность сигналов.
- •1.5.4. Преобразования Хинчина - Винера.
- •1.6. Модели случайных сигналов и помех.
- •1.6.1. Телеграфный сигнал.
- •1.6.2. Белый шум.
- •1.6.3. Гауссовский процесс.
- •1.6.4. Гауссовский белый шум.
- •1.7. Узкополосные и аналитические сигналы.
- •1.7.1. Определение узкополосного процесса.
- •1.7.2.Формы математических моделей.
- •1.7.3. Аналитические сигналы.
- •1.7.4. Условие ортогональности сигналов в усиленном смысле.
- •1.7.5. Корреляционная функция узкополосного процесса.
- •1.8. Выводы.
- •Управление информационными параметрами сигналов.
- •1.9. Классификация методов модуляции.
- •1.10. Корреляционные и спектральные характеристики модулированных сигналов.
- •1.11. Выводы.
- •2. Прохождение сигналов через линейные цепи с постоянными параметрами.
- •2.1. Определение линейной цепи. Добавить параметры и спектры модулированных сигналов.
- •2.2. Дельта - функция - как пример пробного сигнала.
- •2.3. Временной и спектральный методы анализа передачи сигналов через линейные цепи.
- •2.4. Особенности анализа радиосигналов в избирательных цепях.
- •Эквивалентные схемы четырехполюсников.
- •Характеристические параметры четырехполюсников.
- •3.2. Характеристики линейных активных четырехполюсников.
- •3.3. Транзисторный усилитель - как пример активного линейного четырехполюсника.
- •3.4. Частотные свойства усилителей.
- •3.5. Свойства и характеристики активных линейных цепей с обратной связью.
- •1. Последовательная обратная связь по току.
- •2. Параллельная обратная связь по напряжению.
- •3. Последовательная обратная связь по напряжению.
- •4. Параллельная ос по току.
- •В) Устойчивость линейных активных цепей с обратной связью.
- •1. Алгебраический критерий устойчивости.
- •2. Частотный критерий устойчивости ( критерий Найквиста).
- •Генерирование колебаний в электрических цепях
- •Автоколебательная система - устройство с ос.
- •Самовозбуждение lc - автогенератора гармонических колебаний.
- •Анализ стационарного режима автогенератора методом гармонической линеаризации
- •4.4 Графический метод анализа стационарного режима.
- •Анализ автоколебаний методом уравнений состояния
- •5. Анализ нелинейных цепей
- •5.1. Общие понятия об элементах нелинейных цепей
- •5.2. Модели нелинейных элементов
- •5.2.2 Безынерционные нелинейные четырехполюсники
- •5.2.3. Нелинейная емкость
- •5.2.4. Нелинейная индуктивность.
- •5.3. Аналог цепей с безынерционными элементами
- •5.3.1. Общие сведения
- •5.3.2. Графический метод анализа
- •5.3.3. Графоаналитический метод
- •5.3.4. Численные методы
- •5.4. Преобразование спектров сигналов в нелинейных цепях и его практическое применение.
- •5.4.1. Общие положения
- •5.4.2. Умножение частоты
- •5.4. Амплитудная модуляция
- •5.5. Детектирование ам-колебаний
- •6. Анализ параметрических цепей
- •5.1. Общие понятия о параметрических цепях
- •6.2. Импульсная характеристика и передаточная функция параметрической цепи
- •6.3. Энергетика цепей с параметрическими реактивными элементами
- •6.4. Параметрический резонанс.
- •6.5. Баланс мощностей в параметрических цепях.
- •6.6. Параметрические усилители
- •7. Фильтрация сигналов на фоне помех.
- •7.1. Задачи и методы фильтрации
- •7.2. Согласованная фильтрация заданного сигнала
- •7.2.1. Методика анализа.
- •7.2.2 Импульсная характеристика согласованного фильтра. Физическая осуществимость.
- •7.2.3. Сигнал и помеха на выходе согласованного фильтра
- •8. Основы цифровой обработки сигналов
- •8.1.Основные понятия
- •8.2.Спектр дискретного сигнала
- •С пектральная плотность периодической функции
- •8.3.Алгоритм быстрого преобразования Фурье
- •8.4. Временные и спектральные методы исследования линейных стационарных цифровых фильтров.
- •8.5. Использование z-преобразования в теории стационарных линейных цифровых фильтров.
- •8.6. Основы реализации цифровых фильтров.
- •8.7. Синтез цифровых фильтров.
- •8.7.1. Синтез по заданной импульсной характеристики аналогового прототипа g(t).
- •8.7.2. Синтез цф по заданной частотной характеристике ќ(ω) (или операторного коэффициента передачи k(p)).
- •8.8. Учет погрешности цифровой фильтрации из-за квантования сигнала по уровням.
- •8.9. Выводы.
-
Анализ автоколебаний методом уравнений состояния
Уравнение (4), получение для автоколебательной цепи, эквивалентно системе уравнений первого порядка:
(9)
Такое представление уравнений цепи соответствует уравнениям состояния.
В силу нелинейного характера функции I(U) найти решение (9) аналитически нельзя. Для анализа процессов применяют численные методы интегрирования систем дифференциальных уравнений - численное моделирование.
Простейший подход состоит в приближенной замене производной от функции f(t):
Обозначим
получим
(10)
Предположим, что известна начальная флуктуация iL(0)=i0; V(0)=0. Поскольку функция I(U) может быть вычислена для любых значений аргумента, подставляя в (10), получаем:
Теперь, подставив полученные значения снова в (10), найдем iL2, V2 и т.д. Этот метод приближенного решения носит название метода Эйлера.
Рассмотрение процессов в автоколебательных цепях на плоскости состояния часто оказывается более наглядным, чем в другой форме.
Рассмотрим примеры, показывающие взаимосвязь характеристики и линии ОС с траекторией на плоскости состояния и осциллограммы процессов, полученных численным решением уравнений состояния.
3. Жесткий режим с монотонным установлением колебаний
Гармонические колебания можно получить в системах, не содержащих колебательного контура. Выделение колебания нужной частоты здесь основано на том, что условия самовозбуждения (2) и (3) в ряде случаев могут выполнять только на одной частоте.
и цепи обратной связи с коэффициентом
передачи
.
Чтобы воспользоваться формами (2) и (3)
примем, что
и определим
.
Для этого воспользуемся методом контурных
токов, в соответствии с которым составим
систему уравнений, связывающих
решая эту систему
относительно
,
находим
Так как
то
(11)
Так
как фазовый сдвиг, вносимый усилителем,
составляет p рад, то условие самовозбуждения
(3) будет выполнено, если
jOC(w)=arctg(Im/Re
)=.
Как следует из (11) последнее выполняется при условии
Откуда для частоты генерации находим:
(12)
Подставляя (12) в (11) находим значения модуля передаточной функции:
(13)
Используя (13) в (2) находим коэффициент усиления усилителя, при котором возможна генерация:
Аналогичным образом анализируется и другие схемы RC - автогенераторов.
Л. 22-24
5. Анализ нелинейных цепей
5.1. Общие понятия об элементах нелинейных цепей
Цепи, которые изучались ранее, относятся к классу линейных цепей. Параметры элементов этих цепей. Параметры элементов этих цепей - сопротивлений, индуктивностей, емкостей - не зависит от значений приложенных к ним напряжений или протекающих через них токов.
В действительности любой реальный элемент таким постоянством не обладает и линейная теория оказывается справедливой только в определенных пределах значений напряжений и токов. Существует также обширный класс исключительно важных элементов и устройств, параметры, которых существенно зависят от токов или напряжений. Такие элементы называются нелинейными. Им нельзя приписать какой-то постоянный параметр даже при изменении переменных в ограниченном диапазоне. Для количественного описания свойств нелинейных элементов необходимо задавать зависимости, называемые характеристиками. Рассмотрим в общем виде характеристики основных нелинейных идеализированных элементов.