Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РТЦиС (Антонов).doc
Скачиваний:
57
Добавлен:
27.10.2018
Размер:
5.29 Mб
Скачать
  1. Самовозбуждение lc - автогенератора гармонических колебаний.

Рассмотрим схему, в которой при определенных условиях могут возникать и существовать автоколебания. Схема содержащая полевой транзистор, колебательный контур и индуктивную цепь обратной связи. Будем считать, что ток стока транзистора связан с напряжением затвор-исток нелинейной зависимостью i0=I(UЗИ).

В колебательном контуре уравнения, связывающие ток в емкости iС c током iL записывается в виде системы:

или как одно уравнение

Для цепи обратной связи имеем

Следовательно, полную систему уравнений цепи можно записать таким образом:

(4)

или в развернутом виде:

(3)

После включения источников постоянного напряжения в цепи начинается заряд емкости и протекания тока в индуктивности, причем начальные значения iL(t) и UC(t) весьма малы. Напряжение U(t) при этом также будет незначительно отличаться от ЕСМ и зависимость I(U) может быть существенно упрощена.

Пусть I(U)=a0+a1U+a2U2+... (см. рис.). Так как

то

Если принять, что

то можно линеаризовать зависимость iC(t)-I(ECM)=a1DU=S0DU, где S0 - начальная крутизна, равная тангенсу угла наклона касательной к графику I(U) в точке U=EСМ.

Дифференциальное уравнение для тока будет таким:

или

(6).

Обозначим Тогда уравнение (6) можно записать в виде:

Это линеаризованное уравнение колебательного процесса в автогенераторе на стадии возникновения и нарастания колебаний. Его решения определяет закон суммирования амплитуды колебаний:

и их частоту

Начальные значения амплитуды и фазы колебаний можно найти из начальных условий. Но в рассматриваемом случае исходными следует считать случайными флуктуациями токов и напряжений, поэтому особого значения определения их величины не имеет.

Более важным является другое. Если aЭ>0, то какой бы ни была начальная флуктуация тока, процесс в цепи будет затухать. Если же aЭ<0, то сколь угодно малая начальная флуктуация тока будет нарастать с течением времени.

В первом случае цепь является устойчивой. Корни характеристического уравнения

имеют отрицательную действительную часть.

Во втором случае цепь неустойчива. Неустойчивость может привести к автоколебаниям в цепи. Условием возникновения автоколебаний является положительность действительной части корней характеристического уравнения цепи. Рассмотрим физический смысл условия неустойчивости. Согласно уравнения (6), для возникновения автоколебаний необходимо иметь aЭ<0, т.е.

Сопротивление потерь в цепи, т.е. превращение энергии колебаний в теплоту, должно быть меньше некоторого значения, обусловленного крутизной характеристики активного элемента и коэффициентом обратной связи. Очевидно, что это условие эквивалентно условию баланса амплитуд вида (2). Фазовое условие существования автоколебаний вида (3) в данном анализе трансформировалось в выражение для частоты колебаний.

Полученное уравнение (6) справедливо только для малых приращений iL(t). Поэтому решение в виде растущей экспоненты справедливо для цепи только на начальном этапе развития процесса автоколебаний. Амплитуда этих колебаний будет возрастать не бесконечно, а достигнет некоторого стационарного значения. Для расчета стационарной амплитуды и частоты колебаний в установившемся режиме используют другой метод, называемый гармонической линеаризацией.