Добавил:
ilirea@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika-1.doc
Скачиваний:
376
Добавлен:
22.08.2018
Размер:
3.55 Mб
Скачать

135. Физические основы радионуклидных методов диагностики и лучевой терапии.

135/1. Использование радионуклидов и нейтронов в медицине

Одна группа — это методы, использующие радиоактивные индикаторы (меченые атомы) с диагностическими и исследовательскими целями. Другая группа методов основана на применении ионизирующего излучения радионуклидов для био­логического действия с лечебной целью. К этой же группе можно отнести бактерицидное действие излучения.

Метод меченых атомов заключается в том, что в организм вводят радионуклиды и определяют их местонахождение и активность в органах и тканях. Для обнаружения распределения радионуклидов в разных органах тела используют гамма-топограф (сцинтиграф), который автоматически регистрирует распределение интенсивности радиоактивного препарата. Гамма-топограф представляет собой сканирующий счетчик, который постепенно проходит большие участки над телом больного. Регистрация излучения фиксируется, например, штриховой отметкой на бумаге. Применяя радиоактивные индикаторы, можно проследить за обменом веществ в организме. Гамма-топограф дает сравнительно грубое распределение источников ионизирующего излучения в органах. Более детальные сведения можно получить методом авторадиографии.

В этом методе на исследуемый объект, например биологическую ткань, наносится слой чувствительной фотоэмульсии. Содержащиеся в объекте радионуклиды оставляют след в соответствующем месте эмульсии, как бы фотографируя себя. Полученный снимок называют радиоавтографом или авторадиограммой.

Лечебное применение радионуклидов в основном связано с использованием -излучения (гамма-терапия). Гамма-установка состоит из источника, обычно 60Со, и защитного контейнера, внутри которого помещен источник; больной размещается на столе. Применение гамма-излучения высокой энергии позволяет разрушать глубоко расположенные опухоли, при этом поверхностно расположенные органы и ткани подвергаются меньшему губительному действию.

Терапевтическое применение имеют и -частицы. Так как они обладают значительной линейной плотностью ионизации, то по­глощаются даже небольшим слоем воздуха. Поэтому использование -частиц в терапии (альфа-терапия) возможно лишь при их непосредственном контакте с организмом, либо при введении внутрь организма.

Еще одно лечебное применение -частиц связано с использова­нием потока нейтронов. В опухоль предварительно вводят элементы, ядра которых под действием нейтронов вступают в ядерную реакцию с образованием -частиц. Облучая после этого больной орган потоком нейтронов, вызывают ядерную реакцию и, следовательно, образование -частиц.

Ускорители заряженных частиц и их использование в медицине

Ускорителем называют устройство, в котором под действием электрических и магнитных полей формируется пучок заряженных частиц высокой энергии.

Различают линейные и циклические ускорители. В линейных ускорителях частицы движутся по прямолинейной траектории, в циклических — по окружности или спирали.

Наиболее известным циклическим ускорителем является циклотрон (рис. 27.14), в котором под действием магнитного поля индукции , направленной перпендикулярно плоскости рисунка, заряженная частица движется по окружностям. Переменное электрическое поле между дуантами ускоряет частицу. Таким образом, магнитное 135/2.

поле обеспечивает вращение час­тицы по окружности, а электрическое поле — изменение ее кинетической энергии. Источник частиц находится вблизи центра циклотрона, пучок ускоренных частиц вылетает из циклотрона после ускорения.

Циклотрон способен ускорять протоны до 20—25 МэВ.

Фазотрон (синхроциклотрон) способен ускорять протоны до энерг. ~ ГэВ.

Для ускорения тяжелых частиц до энергий порядка гигаэлектрон-вольт и выше используют синхрофазотрон, в котором изменяют и маг­нитное поле, и частоту электрического поля.

Довольно распространенным ускорителем электронов невысоких энергий является бетатрон. В отличие от других циклических ускорителей в нем электрическое поле не подается от внешних источников, а создается при изменении магнитного поля (явление электромагнитной индукции). Электрон удерживается на орбите магнитным полем и ускоряется электрическим. Бетатроны способны ускорять электроны до десятков мега-электрон-вольт.

Ускорители заряженных частиц применяют как средство лучевой терапии в двух основных направлениях.

Во-первых, используют тормозное рентгеновское излучение, возникающее при торможении электронов, ускоренных бетатроном. Использование тормозного излучения оказывается более эффективным, чем гамма-терапия.

Во-вторых, используют прямое действие ускоренных частиц: электронов, протонов. Электроны ускоряются бетатроном, а протонный пучок получают от других ускорителей. Малое рассеяние протонов позволяет формировать узкие пучки и, таким образом, очень точно воздействовать на опухоль. Наряду с лечебным применением ускорителей в последние годы открылись возможности использования их в диагностике.

Ионная медицинская радиография. Суть метода: пробег тяжелых заряженных частиц (-частицы, протоны) зависит от плотности вещества. Поэтому если регистрировать поток частиц до и после прохождения объекта, то можно получить сведения о средней плотности вещества.

Синхротронным излучением называют интенсивное ультрафиолетовое и мягкое рентгеновское излучение, которое испускают электроны, движущиеся по круговой орбите со скоростями, близкими к скорости света. Синхротронное излучение в целях диагностики применяют аналогично обычному рентгеновскому излучению. Одно из преимуществ синхротронного излучения перед рентгеновским заключается в возможности поглощения этого излучения преимущественно некоторыми элементами, например иодом, который может иметь повышенную концентрацию в тканях. Отсюда возникают условия для ранней диагностики злокачественных опухолей.

Синхротронное излучение начинают также применять и в лучевой терапии.

Соседние файлы в предмете Биофизика