Добавил:
ilirea@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika-1.doc
Скачиваний:
376
Добавлен:
22.08.2018
Размер:
3.55 Mб
Скачать

54. Гидравлическое сопротивление. Распределение давления и скорости крови в сосудистой системе.

Потери энергии (уменьшение гидравлического напора) можно наблюдать в движущейся жидкости не только на сравнительно длинных участках, но и на коротких. В одних случаях потери напора распределяются (иногда равномерно) по длине трубопровода - это линейные потери; в других - они сосредоточены на очень коротких участках, длиной которых можно пренебречь, - на так называемых местных гидравлических сопротивлениях: вентили, всевозможные закругления, сужения, расширения и т.д., короче всюду, где поток претерпевает деформацию. Источником потерь во всех случаях является вязкость жидкости.

Следует заметить, что потери напора и по длине и в местных гидравлических сопротивлениях существенным образом зависят от так называемого режима движения жидкости. Увеличение скорости течения вязкой жидкос­ти вследствие неоднородности давления по поперечному сечению трубы создает завихрения, и движение становится вихревым, или турбулентным. При турбулентном течении скорость частиц в каждом месте непрерывно и хаотически изменяется, движение является нестационарным.

Характер течения жидкости по трубе зависит от свойств жидкости, скорости ее течения, размеров трубы и определяется числом Рейнольдса:

Re = ж D/,

где ж — плотность жидкости, D — диаметр трубы, — средняя по сечению трубы скорость течения.

Если число Рейнольдса больше некоторого критического (Re > Reкр), то движение жидкости турбулентное. Например, для гладких цилиндрических труб Reкр  2300. Так как число Рейнольдса зависит от вязкости и плотности жидкости, то удобно ввести их отношение, называемое кинема­тической вязкостью:

Используя это понятие, число Рейнольдса можно выразить в виде

Re= D/v.

Единицей кинематической вязкости является квадратный метр в секунду 2/с), в системе СГС — стоке (Ст); соотношение между ними: 1 Ст = 10-4 м2/с.

Кинематическая вязкость полнее, чем динамическая, учиты­вает влияние внутреннего трения на характер течения жидкости или газа. Так, вязкость воды приблизительно в 100 раз больше, чем воздуха (при 0 °С), но кинематическая вязкость воды в 10 раз меньше, чем воздуха, и поэтому вязкость сильнее влияет на ха­рактер течения воздуха, чем воды.

Течение крови в артериях в норме является ламинарным, не­большая турбулентность возникает вблизи клапанов сердца. При патологии, когда вязкость бывает меньше нормы, число Рей­нольдса может превышать критическое значение и движение ста­нет турбулентным.

Турбулентное течение связано с дополнительной затратой энергии при движении жидкости, что в случае крови приводит к добавочной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболеваний. Этот шум прослушивают на плечевой артерии при измерении давления крови.

Течение воздуха в носовой полости в норме ламинарное. Одна­ко при воспалении или каких-либо других отклонениях от нормы оно может стать турбулентным, что повлечет дополнительную ра­боту дыхательных мышц.

Число Рейнольдса является критерием подобия. При модели­ровании гидро- и аэродинамических систем, в частности крове­носной системы, модель должна иметь такое же число Рейнольд­са, как и натура, в противном случае не будет соответствия между ними. Это относится также и к моделированию обтекания тел при движении их в жидкости или газе. Из (7.17) видно, что уменьше­ние размеров модели по сравнению с натурой должно быть ском­пенсировано увеличением скорости течения или уменьшением кинематической вязкости модельной жидкости или газа.

Кавитация — (от лат. cavitas — пустота) — образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных газом, паром или их смесью. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация), существуют и другие причины возникновения эффекта.

Соседние файлы в предмете Биофизика