
- •Механика
- •1. Система отсчета. Радиус-вектор материальной точки. Закон движения материальной точки (мт).
- •2. Вектор перемещения (мт). Путь. Скорость. Ускорение.
- •3. Угловая скорость. Угловое ускорение.
- •4. Нормальное и тангенциальное ускорения.
- •5. Пространство и время в движущихся системах отсчета. Закон инерции Галилея. Инерциальные системы отсчета (исо). Преобразования Галилея и следствия из них.
- •Пример преобразования Галилея:
- •15. Уравнение Ньютона-Эйнштейна. 2-й закон Ньютона.
- •16. Момент силы. Момент импульса частицы. Момент инерции.
- •Электромагнетизм и электромагнитные волны
- •Фундаментальные свойства зарядов
- •2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции.
- •3. Потенциал электрического поля. Эквипотенциали. Связь потенциала и напряженности электрического поля.
- •Где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей у и z, можем найти вектор ё:
- •4. Проводник в электрическом поле. Электростатическая индукция.
- •5. Атомы и молекулы в электрическом поле.
- •6. Поляризация диэлектриков. Вектор поляризации. Диэлектрическая проницаемость вещества. Электрическое смещение.
- •7. Сегнетоэлектрики. Пьезоэлектрический эффект. Обратный пьезоэлектрический эффект.
- •8. Электрическое поле заряженного проводника. Электроемкость проводника.
- •9. Конденсаторы. Поле внутри плоского конденсатора.
- •10. Энергия системы зарядов. Энергия электрического поля.
- •11. Классическая теория электропроводности. Закон Ома в дифференциальной (локальной) форме. Закон Ома для однородного проводника.
- •12. Закон Джоуля – Ленца в дифференциальной форме. Закон Джоуля-Ленца для однородного проводника.
- •18. Контур с током в магнитном поле.
- •19. Атомы и молекулы в магнитном поле. Парамагнетики.
- •20. Диамагнетики. Природа диамагнетизма.
- •21. Вектор намагниченности. Магнитная проницаемость вещества. Напряженность магнитного поля.
- •22. Ферромагнетики. Домены. Петля гистерезиса.
- •26. Явление самоиндукции. Индуктивность.
- •27. Энергия магнитного поля. Объемная плотность энергии.
- •28. Гипотеза Максвелла: магнитоэлектрическая индукция.
- •30. Свободные затухающие колебания. Период колебаний.
- •31. Вынужденные электрические колебания. Резонанс.
- •32. Возникновение электромагнитной волны. Волновое уравнение для электромагнитного поля. Плоская электромагнитная волна.
- •38. Методы получения когерентных источников (методы наблюдения интерференции).
- •Квантовая механика
- •1. Фотоэффект. Квантовый характер электромагнитного излучения. Формула Эйнштейна для фотоэффекта.
- •2. Фотоны. Энергия, масса и импульс фотона. Корпускулярно-волновой дуализм света.
- •3. Гипотеза де Бройля. Волна де Бройля. Экспериментальное подтверждение волновых свойств частиц.
- •А)Опыт к. Дэвиссона и л. Джермера (1927 г.)
- •B) Опыт Томсона и Тартаковского.
- •4. Особенности описания движения микрочастиц. Соотношения неопределенностей.
- •5. Уравнение Шрёдингера. Волновая функция.
- •6. Частица в одномерной бесконечно глубокой потенциальной яме.
- •7. Квантовый гармонический осциллятор. Энергия нулевых колебаний.
- •10. Уравнение Шредингера для атома водорода. Квантовые числа.
- •Основные квантовые числа
- •13. Строение многоэлектронного атома. Периодическая система элементов Менделеева.
- •Термодинамика и статистическая физика
- •1. Макросистема и методы ее описания. Контакты систем. Температура.
- •2. Тепловое равновесие. Уравнение состояния. Модель идеального газа.
- •3. Равновесные процессы. Изопроцессы.
- •6. Теплота. 1-е начало термодинамики.
- •7. Теплоемкость идеального газа. Соотношение Майера.
- •8. Зависимость теплоемкости многоатомного газа от температуры.
- •38. Лазеры. Процесс генерации.
- •39. Лазеры. Создание инверсной населенности.
- •40. Фермионы. Распределение Ферми-Дирака. Заполнение электронами разрешенных уровней в кристалле.
- •41. Энергетические уровни в атоме и энергетические зоны в кристалле.
- •42. Распределение электронов по квантовым состояниям в кристалле. Проводники и диэлектрики.
- •51. Деление ядер. Цепная реакция деления. Ядерные реакторы.
- •54. Квантовые числа элементарных частиц. Частицы и античастицы.
Термодинамика и статистическая физика
1. Макросистема и методы ее описания. Контакты систем. Температура.
Для описания поведения макросистем были разработаны два метода: статистический и термодинамический. При статистическом методе описания используется вполне определенная модель внутреннего строения вещества, в частности модель атомно-молекулярного строения макросистем. Применяя методы статистической физики, теории вероятности, выражают физически измеряемые величины, характеризующие поведение макросистем, так называемые макропараметры, через характеристики микрочастиц, входящих в состав макросистем, так называемые микропараметры. Такой прием был использован нами при выражении температуры газа через среднюю кинетическую энергию молекул этого газа. Термодинамический метод описания не предполагает использование каких-то моделей внутреннего строения вещества. В рамках термодинамики физическое состояние тела характеризуется рядом величин, совокупность которых однозначно описывает поведение макросистемы. Число таких величин, называемых термодинамическими, зависит от сложности изучаемого тела и вида его взаимодействия с другими телами. Так, например, газ в комнате вполне можно описать четырьмя величинами: температурой Т, давлением р, объемом V, массой т. Для количественного описания необратимости тепловых процессов было введено понятие энтропии.
В основу термодинамики как научного метода описания поведения макросистем положены три принципа (три начала) термодинамики,- являющиеся обобщением громадного числа опытных фактов. Важнейшими термодинамическими явлениями являются: термодинамическое или тепловое равновесие, изменение внутренней энергии макросистем за счет совершения работы и передачи количества теплоты в процессе теплопередачи, необратимость тепловых процессов.
Термодинамическая система — совокупность макроскопических тел, которые могут взаимодействовать между собой и с др. Телами (внешней средой) — обмениваться с ними энергией и веществом.
Термодинамические системы бывают трех видов:
• Изолированные (нет обмена ни веществом, ни энергией с окружающей средой).
• Закрытые (замкнутые) (нет обмена веществом с окружающей средой).
• Открытые (есть и энерго- и массообмен с окружающей средой)
Температура с молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы. является макроскопическим параметром, характеризующим тепловое равновесие систем тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру, а другие макроскопические параметры (р, V, т) могут быть различны.
2. Тепловое равновесие. Уравнение состояния. Модель идеального газа.
Тепловое равновесие — состояние системы, при котором остаются неизменными по времени величины этой системы, такие как температура, давление, объем и энтропия в условиях изолированности от окружающей среды.
Состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды, называется тепловым равновесием.
Уравнения, устанавливающие зависимость между параметрами (давлением, температурой, объемом), называются уравнениями состояния.
Единственное уравнение состояния, которое продолжает широко использоваться в термодинамике, - уравнение состояния идеального газа.
Идеальным газом называется газ, приближающийся по свойствам к газу низкомолекулярного вещества, находящегося при очень низком давлении и сравнительно высокой температуре (достаточно далекой от температуры конденсации).