Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика Voprosy_k_ekzamenu_2017.docx
Скачиваний:
113
Добавлен:
12.02.2018
Размер:
28.2 Mб
Скачать

21. Вектор намагниченности. Магнитная проницаемость вещества. Напряженность магнитного поля.

Вектор намагничивания — магнитный момент элементарного объёма, используемый для описания магнитного состояния вещества.

Для характеристики степени намагниченности вещества вводят понятие вектора намагниченности — векторную сумму магнитных моментов всех частиц, находящихся в единице объема вещества:

 .

(19.4)

где суммирование проводится по магнитным моментам всех частиц (атомов, молекул), находящихся в объеме V.

Связь между магнитным полем (H) и магнитной индукцией (B) в веществе характеризуется физической величиной, называемой магнитной проницаемостью. Абсолютная магнитная проницаемость среды – это отношение B к H. Числовое значение ее выражается отношением ее величины к величине магнитной проницаемости вакуума и обозначается µ.. Как величина относительная, она не имеет единицы измерения. Следовательно, относительная магнитная проницаемость µ – величина, показывающая, в какое число раз индукция поля данной среды меньше (или больше) индукции вакуумного магнитного поля. Магнитная проницаемость всех веществ различна. Исходя из ее величины, вещества подлежат делению на три большие группы.

Напряженность поля. Для определения характеристик магнитного поля вместе с вектором магнитной индукции может применяться значение, именуемое напряженностью магнитного поля. Данный термин является векторной величиной, определяющей интенсивность внешнего магнитного поля. Направление магнитного поля в среде с одинаковыми свойствами по всем направлениям вектор напряженности будет совпадать с вектором магнитной индукции в точке поля.

22. Ферромагнетики. Домены. Петля гистерезиса.

Ферромагнетиками называются твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.

Ферромагнетики в отличие от слабомагнитных диа- и парамагнетиков являются сильномагнитными средами: внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле.

Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией, т.е. свойством намагничиваться с различной степенью трудности в различных направлениях.

Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики.

Домен – участок ферромагнетика, в котором спины электронов совпадают. Спин – вращение электрона вокруг оси.

23. Закон электромагнитной индукции Фарадея. Правило Ленца.

В 1831 г. М. Фарадеем было сделано одно из важнейших фундаментальных открытий в электродинамике – обнаружено явление электромагнитной индукции: при любом изменении магнитного потока, сцепленного с проводящим замкнутым контуром, в этом контуре возникает ЭДС индукции, которая определяется как

Знак “–” в выражении означает, что при увеличении магнитного потока магнитное поле, созданное индукционным током, направлено против внешнего магнитного поля. Если же магнитный поток уменьшается по величине, то магнитное поле индукционного тока совпадает по направлению с внешним магнитным полем.

24. Закон электромагнитной индукции в формулировке Максвелла.

Формулировка закона электромагнитной индукции, данная Максвеллом:

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле.

Математическая формулировка закона электромагнитной индукции в понимании Максвелла имеет вид:

Циркуляция вектора напряженности этого поля по любому неподвижному замкнутому контуру определяется выражением

25. Вихревые токи (токи Фуко). Скин-эффект.

Вихревые токи— вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем.

Токи Фуко, возникающие в проводах, по которым текут переменные токи, направленны так, что ослабляют ток внутри провода и усиливают вблизи поверхности. В результате быстропеременный ток оказывается распределенным по сечению неравномерно- он вытесняется на поверхность проводника. Это явление называют скин-эффектом или поверхностным эффектом.