
- •Механика
- •1. Система отсчета. Радиус-вектор материальной точки. Закон движения материальной точки (мт).
- •2. Вектор перемещения (мт). Путь. Скорость. Ускорение.
- •3. Угловая скорость. Угловое ускорение.
- •4. Нормальное и тангенциальное ускорения.
- •5. Пространство и время в движущихся системах отсчета. Закон инерции Галилея. Инерциальные системы отсчета (исо). Преобразования Галилея и следствия из них.
- •Пример преобразования Галилея:
- •15. Уравнение Ньютона-Эйнштейна. 2-й закон Ньютона.
- •16. Момент силы. Момент импульса частицы. Момент инерции.
- •Электромагнетизм и электромагнитные волны
- •Фундаментальные свойства зарядов
- •2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции.
- •3. Потенциал электрического поля. Эквипотенциали. Связь потенциала и напряженности электрического поля.
- •Где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей у и z, можем найти вектор ё:
- •4. Проводник в электрическом поле. Электростатическая индукция.
- •5. Атомы и молекулы в электрическом поле.
- •6. Поляризация диэлектриков. Вектор поляризации. Диэлектрическая проницаемость вещества. Электрическое смещение.
- •7. Сегнетоэлектрики. Пьезоэлектрический эффект. Обратный пьезоэлектрический эффект.
- •8. Электрическое поле заряженного проводника. Электроемкость проводника.
- •9. Конденсаторы. Поле внутри плоского конденсатора.
- •10. Энергия системы зарядов. Энергия электрического поля.
- •11. Классическая теория электропроводности. Закон Ома в дифференциальной (локальной) форме. Закон Ома для однородного проводника.
- •12. Закон Джоуля – Ленца в дифференциальной форме. Закон Джоуля-Ленца для однородного проводника.
- •18. Контур с током в магнитном поле.
- •19. Атомы и молекулы в магнитном поле. Парамагнетики.
- •20. Диамагнетики. Природа диамагнетизма.
- •21. Вектор намагниченности. Магнитная проницаемость вещества. Напряженность магнитного поля.
- •22. Ферромагнетики. Домены. Петля гистерезиса.
- •26. Явление самоиндукции. Индуктивность.
- •27. Энергия магнитного поля. Объемная плотность энергии.
- •28. Гипотеза Максвелла: магнитоэлектрическая индукция.
- •30. Свободные затухающие колебания. Период колебаний.
- •31. Вынужденные электрические колебания. Резонанс.
- •32. Возникновение электромагнитной волны. Волновое уравнение для электромагнитного поля. Плоская электромагнитная волна.
- •38. Методы получения когерентных источников (методы наблюдения интерференции).
- •Квантовая механика
- •1. Фотоэффект. Квантовый характер электромагнитного излучения. Формула Эйнштейна для фотоэффекта.
- •2. Фотоны. Энергия, масса и импульс фотона. Корпускулярно-волновой дуализм света.
- •3. Гипотеза де Бройля. Волна де Бройля. Экспериментальное подтверждение волновых свойств частиц.
- •А)Опыт к. Дэвиссона и л. Джермера (1927 г.)
- •B) Опыт Томсона и Тартаковского.
- •4. Особенности описания движения микрочастиц. Соотношения неопределенностей.
- •5. Уравнение Шрёдингера. Волновая функция.
- •6. Частица в одномерной бесконечно глубокой потенциальной яме.
- •7. Квантовый гармонический осциллятор. Энергия нулевых колебаний.
- •10. Уравнение Шредингера для атома водорода. Квантовые числа.
- •Основные квантовые числа
- •13. Строение многоэлектронного атома. Периодическая система элементов Менделеева.
- •Термодинамика и статистическая физика
- •1. Макросистема и методы ее описания. Контакты систем. Температура.
- •2. Тепловое равновесие. Уравнение состояния. Модель идеального газа.
- •3. Равновесные процессы. Изопроцессы.
- •6. Теплота. 1-е начало термодинамики.
- •7. Теплоемкость идеального газа. Соотношение Майера.
- •8. Зависимость теплоемкости многоатомного газа от температуры.
- •38. Лазеры. Процесс генерации.
- •39. Лазеры. Создание инверсной населенности.
- •40. Фермионы. Распределение Ферми-Дирака. Заполнение электронами разрешенных уровней в кристалле.
- •41. Энергетические уровни в атоме и энергетические зоны в кристалле.
- •42. Распределение электронов по квантовым состояниям в кристалле. Проводники и диэлектрики.
- •51. Деление ядер. Цепная реакция деления. Ядерные реакторы.
- •54. Квантовые числа элементарных частиц. Частицы и античастицы.
26. Явление самоиндукции. Индуктивность.
При изменении силы тока в этой цепи произойдет изменение магнитного поля, в результате чего в этой же цепи возникнет дополнительный индукционный ток. Такое явление называется самоиндукцией, а ток, возникающий при этом, называется током самоиндукции.
Явление
самоиндукции
- это возникновение в проводящем контуре
ЭДС, создаваемой вследствие изменения
силы тока в самом контуре.
Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.
ЭДС
самоиндукции определяется по формуле:
Индуктивность- называют коэффициент пропорциональности между силой тока в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур.
27. Энергия магнитного поля. Объемная плотность энергии.
Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.
Энергия
магнитного поля, создаваемого током в
замкнутом контуре индуктивностью L,
равна (где I — сила тока в контуре).
Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.
Физическая величина равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии.
28. Гипотеза Максвелла: магнитоэлектрическая индукция.
Максвелл
ввел в физику понятие вихревого
электрического поля: Всякое изменение
магнитного поля порождает в окружающем
пространстве вихревое электрическое
поле, силовые линии которого замкнуты.
Максвелл высказал гипотезу о существовании и обратного процесса:
Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.
Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла).
Из теории Максвелла вытекает ряд важных выводов:
-
Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле.
Электромагнитные
волны поперечны – векторы Е и В
перпендикулярны друг другу и лежат в
плоскости, перпендикулярной направлению
распространения волны.
2. Электромагнитные волны распространяются в веществе с конечной скоростью
Скорость c=300000 км/с распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.
-
По гипотезе Максвелла в электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому, Максвелл считал, что объемные плотности электрической и магнитной энергии равны друг другу.
29. Колебательный контур без активного сопротивления (L-C – контур). Период колебаний.
Примером электрической цепи, в которой могут возникнуть свободные электрические колебания, является простейший колебательный контур, состоящий из конденсатора электроемкостью С и соединенной с ним последовательно катушки индуктивности L.
Колебательный процесс в колебательном контуре переменного тока, который состоит из идеальной катушки L (R = 0) и конденсатора C, то есть контура без потерь. Колебательный процесс в таком контуре заключается во взаимном преобразовании электрического и магнитного полей.
Предположим,
что конденсатор включен на заряд и
получил от источника e(t)
энергию электрического поля
,
после этого конденсатор переключен в
режим разряда на катушку L.
При
этом в замкнутом контуре LC
появляется ток , где частота собственных
колебаний контура равна
.
Период
колебаний в контуре определяется
формулой Томсона: