Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diss / 25.pdf
Скачиваний:
78
Добавлен:
27.03.2016
Размер:
2.49 Mб
Скачать

 

 

DOA Estimations with ESPRIT Algorithms

113

 

 

 

 

 

 

 

 

 

 

(

 

 

μ

i

 

(

 

 

 

Γ

B )b

( μ ) tan

 

 

= Γ

B )b

 

( μ ), 1≤ i d

(5.82)

 

 

 

1

 

L i

2

2

 

L

i

 

 

 

 

 

 

 

 

Beam patterns of a ULA with M = 8 sensors was computed. A DFT

beamspace transformation W 8h

was employed to form L = 3 beams.

When rows 4, 5, and 6 were employed to form the beams, the corresponding beam patterns b1(μi), b4(μi), and b5(μi) are obtained as shown in Figure 5.6(a). Another computation was made to verify that first and last components are physically adjacent to each other. Rows 1, 2, and 8 of W 8h are employed to form L = 3 beams. The corresponding beam pat-

terns are adjacent as shown in Figure 5.6(b). Employing these insights, the following sections explain the working of unitary ESPRIT in DFT beamspace.

5.7 Unitary ESPRIT in DFT Beamspace

In this section, the unitary ESPRIT algorithm is applied to uniform linear arrays in DFT beamspace. A real-valued beamspace array steering matrix is obtained by choosing the reference point at the center of the array and by applying beamspace transformation. This real-valued transformation results in a considerable reduction in computational complexity and is readily extended to uniform rectangular array [9].

5.7.1One-Dimensional Unitary ESPRIT in DFT Beamspace

Consider a ULA of M elements with maximum overlap. Assume the data and signal model discussed in Chapter 3 and an L-dimensional beamspace. The unitary ESPRIT in DFT beamspace can be formulated in the following steps.

5.7.1.1 Transformation to Beamspace

The element space data vector X is first transformed into the beamspace data vector Y as

Y = W b X

(5.83)

The transformation to DFT beamspace implemented using an FFT that exploits the

Y = W b X C M × N can be Vandermonde form of the

114

Introduction to Direction-of-Arrival Estimation

Beam patterns for ULA and standard DFT beams

8

6

4

2

0

−2

 

 

 

Beampatterns

Beam patterns for ULA and standard DFT beams

8

6

4

2

0

−2

 

 

 

Beampatterns

8

1

2

b

b

b

·

-

 

 

 

 

·

 

 

 

 

-

 

 

·

 

 

 

·

-

 

 

·

-

 

 

 

 

 

 

−4

−6

4

5

6

b

b

b

·

-

 

 

 

 

·

 

 

 

 

-

 

 

·

 

 

 

·

-

 

 

·

-

 

 

−4

−6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−8

(b)

(a)

(a, b) Beam pattern of an eight-element uniform linear array.

Figure 5.6

DOA Estimations with ESPRIT Algorithms

115

 

 

rows of the FFT matrix, followed by an appropriate scaling of the rows of resulting matrix.

5.7.1.2 Real-Valued Signal Subspace Estimation

The unitary transformation is now applied as discussed in Section 5.4. An SVD of the real-valued matrix

[Re Y Im Y ] R M × 2N with Y = YW b X C M × N

(5.84)

is computed to estimate the d left singular vectors that correspond to the d largest singular values of (5.84); otherwise, an EVD of

Re{X}Re{Y}H + Im{X}Im{Y}H

(5.85)

can also be computed (i.e., covariance approach). This transformation, as described in Section 5.4, automatically achieves forward-backward averaging.

5.7.1.3 Real-Valued Invariance Equation

Let the d singular vectors corresponding to the d largest singular values of (5.84) be denoted by Es R M × d . Asymptotically, the real-valued matri-

ces Es and B span the same d-dimensional signal subspace, so there is a nonsingular matrix TA such that

 

 

B E s T A

(5.86)

Substituting this relation into (5.45), we have the real-valued

invariance equation

 

 

 

 

 

Γ E

s

Υ ≈ Γ

2s

R M × d

 

1

 

 

 

where

 

 

 

 

 

 

Υ = T A ΩT A1

(5.87)

which is solved by LS or TLS as explained in previous sections.

116

Introduction to Direction-of-Arrival Estimation

5.7.1.3 DOA Estimation

The spatial frequencies or DOAs are then estimated by taking eigenvalues of the solution of the invariance equation given by

Γ = T A ΩT A1

where

Ω = diag{ω1 , ω 2 , , ωi , , ω d }

contains the desired DOA information. The whole algorithm that operates in an L-dimensional DFT beamspace is summarized in Table 5.4 and its performance is analyzed in Chapter 6 [1].

In the next section, the concept of DFT beamspace is extended to two-dimensional arrays.

5.7.2Two-Dimensional Unitary ESPRIT in DFT Beamspace

In this section, DFT beamspace technique is applied to two-dimensional arrays, more specifically to uniform rectangular arrays. Consider a uniform rectangular array of size M = Mx × My. Assume the signal and data

Table 5.4

Summary of One-Dimensional Unitary ESPRIT in DFT Beamspace

1.Transformation to Beamspace: Y = WbX

2.Signal Subspace Estimation: Compute Es

as the d dominant left singular vectors of [Re{Y} Im{Y}] (square-root approach)

or as the d dominant eigenvectors of Re{X}Re{Y}H + Im{X}Im{Y}H (covariance approach)

3. Solution of the Invariance Equation: Solve the following equation for ϒ

γ1(B )Es ϒ ≈ Γ2(B )Es

by means of LS or TLS

4. DOA Estimation: Calculate the eigenvalues of the real-valued solution

 

 

 

 

 

 

 

γ = TΩT−1 with Ω = diag{ωi}id=1

Then extract the DOA angular information via

μ

i

 

(

i )

i d

 

= 2 arctan

ω

, 1

 

 

 

 

λ

 

 

 

θ i

= arcsin

 

 

μi

 

 

 

 

 

 

 

 

 

DOA Estimations with ESPRIT Algorithms

117

 

 

model discussed in Chapter 3. By following the similar line for beamspace processing of one-dimensional ULA, we can compute the two-dimen- sional DFT beamspace ESPRIT in a straightforward manner.

5.7.2.1 Transformation to Beamspace

Consider the case of reduced dimensionality directly and assume that Lx out of Mx beams in the x direction and Ly out of My beams in the y direc-

tion are formed, respectively. The total number of beams is L = Lx × Ly.

The

corresponding scaled DFT matrices W Lb x C B x × M x and

W b

C B y × M y are formed as discussed in Section 5.6.2.

L y

 

Let the noise corrupted signals or data received by the array at any given time tn be given by the matrix χ(t n ) C M x × M y . Premultiplying this

matrix by W b

and postmultiplying by W b

and applying the vec{}

L x

 

 

L y

operator, we can have

 

 

 

 

y (t n ) = vec{W LHx

Χ(t n )

 

Lb y } C B , L = L x L y (5.88)

W

We place this column vector as a column of the matrix Y C L×N. The vec{} operator maps a Bx × By matrix to a B × 1 vector by stacking the columns of the matrix. Again by applying the property of Kronecker products (Appendix, Section A.1) to (5.88), we get

Y = [y (t 1 ) y (t 2 ) y (t n )]

 

 

)]

 

= W b

W b

[

x(t

1

)

x(t

1

)

x(t

n

(5.89)

( B y

B x )

 

 

 

 

 

 

 

= (WBby

WBbx ) X C B × N

 

 

 

 

 

Signal subspace now can be estimated from this data.

5.7.2.2 Real-Valued Subspace Estimation

Let Es denote the real-valued signal subspace. The columns of Es RL×d contain the d left singular vectors of

[

Im{Y}

]

R L × 2N

(5.90)

Re{Y}

 

118

Introduction to Direction-of-Arrival Estimation

corresponding to its d largest singular values. Otherwise, using EVD, the d dominant eigenvectors of

Re{Y}Re{Y}H + Im{Y}Im{Y}H

(5.91)

spans the real-valued signal space.

5.7.2.3 Real-Valued Invariance Equation

The transformed real-valued array manifold matrix is now given by

B ( μ

,v

 

) = W b

A( μ

,v

 

)

 

b

 

 

 

 

i

i

W

 

 

 

 

i

 

 

 

L x

 

 

i

 

 

 

 

 

 

L y

 

 

 

 

 

 

 

 

= W b

a

( μ

 

)aT

(v

 

)

 

b

(5.92)

 

 

 

 

i

i

W

 

 

 

 

 

L x

 

 

 

M x

 

 

 

M y

 

 

 

 

L y

 

 

 

 

 

= b

(

μ

i

)bT (v

i

 

) R L x × L y

 

 

 

 

 

 

 

L x

 

 

L y

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b L x ( μi ) = W Lb x a M x

( μi ) R L x

 

and b L y

(vi ) = W Lv y

a M y

(vi ) R L y

are the one-dimensional DFT beamspace manifold vectors in a reduced

dimensional space.

The one-dimensional

array

steering vectors

a M x (μi ) C M x and

a M y (ν i ) C My are the

same as

those defined in

(2.24).

Consider the one-dimensional DFT beamspace vectors in the x direction. As bL x (μi ) satisfies the invariance relationship in (5.82), it follows that B(μi, νi) satisfies

Γ (L x )B ( μ ,v ) tan

 

μi

 

= Γ (L x )B ( μ ,v

 

)

(5.93)

 

2

 

 

1

i i

2

i

i

 

 

 

 

 

 

 

where the one-dimensional selection matrices in the x direction, Γ1( L x ) and Γ2( L x ) , were defined as before for the one-dimensional DFT beamspace. By using the property of the vec{} operator in the Appendix, Section A.1, L = Lx × Ly dimensional DFT beamspace steering vectors b(μi, νi) = vec{B(μi, νi)}satisfy

 

DOA Estimations with ESPRIT Algorithms

119

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

μ

i

 

 

 

 

 

 

 

Γμ1b( μi

,vi

) tan

 

 

 

= Γμ2b( μi ,vi

), 1≤ i d

(5.94)

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

where the two-dimensional selection matrices in the x direction

 

Γ

μ1

= I

Γ (L x )

andΓ

μ2

= I

L y

Γ (L x )

(5.95)

 

 

L y

1

 

 

 

 

2

 

are of size bx × L with bx = (Lx 1) Ly. Similarly, the one-dimensional DFT beamspace manifold vectors in the y direction, bL y (ν i ), satisfy

 

 

(L y )

 

(v

 

)

 

 

 

vi

 

 

 

(L y )

 

 

 

(v

 

)

 

 

Γ

 

 

b

 

tan

 

 

 

= Γ

 

 

 

b

 

 

 

(5.96)

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

L y

 

i

 

 

 

 

2

 

 

 

2

 

 

 

L y

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

such that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B ( μ

 

,v )Γ

(L

y )

 

 

 

v

i

 

= B ( μ ,v

 

)Γ

(L

y )

 

 

 

tan

 

 

 

 

 

(5.97)

 

 

 

 

 

 

 

 

 

 

i

 

i

1

 

 

 

 

 

2

 

 

 

 

 

i

 

 

i 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again after the vec{} operator is applied,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Γ

b( μ

 

,v

 

) tan

 

 

= Γ

 

b( μ ,v ),

 

1≤ i d

(5.98)

 

 

2

 

 

v 1

 

 

i

 

i

 

 

 

 

 

 

 

v 2

 

 

i

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the two-dimensional selection matrices in the y direction

 

 

Γ

 

 

= Γ (L x )

I

L x

andΓ

 

= Γ

(L y )

I

L y

 

(5.99)

 

v 1

 

 

 

1

 

 

 

 

 

 

 

v 2

 

 

2

 

 

 

 

 

 

 

are of size by × L with by = Lx (Ly 1).

The real-valued two-dimensional DFT beamspace steering matrix is then given as

B = (W LHy

W LHx )A c

(5.100)

= [b ( μ1 ,v1 ) b ( μ 2 ,v 2 ) b ( μ d ,v d )] R L × d

Hence, B satisfies the following two invariance properties,

Соседние файлы в папке Diss