- •В.А. Павский линейная алгебра
- •Оглавление
- •Введение
- •I. Введение в линейную алгебру § 1. История развития алгебры
- •§ 2. Множества
- •§ 3. Строение множеств
- •Алгебра множеств
- •§ 4. Число Развитие
- •§ 5. Числовые множества
- •Бесконечные множества
- •Натуральный ряд
- •Множество целых чисел
- •Множество рациональных чисел
- •Множество действительных чисел
- •Множество комплексных чисел
- •Суммы и произведения
- •Приближенные вычисления
- •II. Элементы линейной алгебры § 1. Матрицы и определители 3, 7
- •Действия над матрицами
- •1. Сложение матриц
- •2. Умножение матрицы на число
- •3. Умножение матриц
- •Определитель матрицы
- •Свойства определителей
- •Вычисление определителей
- •Аксиоматическое построение теории определителей
- •Обратная матрица
- •Ранг матрицы
- •Элементарные преобразования матрицы
- •§ 2. Системы линейных алгебраических уравнений
- •Методы решения слау
- •1. Метод Крамера
- •2. Матричный метод
- •3. Метод Гаусса
- •Однородная система линейных алгебраических уравнений (ослау)
- •§ 3. Системы линейных алгебраических неравенств
- •III. Линейные пространства
- •§ 1. Линейная зависимость
- •§ 2. Линейные комбинации. Базисы
- •§ 3. Подпространства
- •§ 4. Прямые суммы
- •§ 5. Евклидовы пространства
- •§ 6. Координатные системы
- •IV. Векторная алгебра § 1. Векторы
- •§ 2. Линейные операции над векторами
- •§ 3. Проекция вектора на ось
- •Линейные свойства проекции вектора на ось
- •Координаты вектора
- •Деление отрезка в данном отношении
- •§ 4. Базис системы векторов
- •§ 5. Скалярное произведение векторов
- •§ 6. Векторное произведение векторов 4
- •Геометрические свойства векторного произведения
- •Алгебраические свойства векторного произведения
- •§ 7. Смешанное произведение векторов 4
- •V. Аналитическая геометрия 4
- •§ 1. Системы координат на плоскости
- •§ 2. Уравнение линии на плоскости
- •§ 3. Уравнение поверхности и линии в пространстве
- •§ 4. Прямая и плоскость в линейном пространстве
- •Уравнение плоскости, проходящей через три точки
- •Взаимное расположение плоскостей
- •Уравнение прямой в пространстве r3
- •Уравнение прямой, проходящей через две точки
- •Прямая как линия пересечения плоскостей
- •Расстояние от точки до прямой
- •Угол между прямой и плоскостью
- •Угол между плоскостями
- •VI. Линейные операторы § 1. Линейный оператор
- •Векторные свойства линейных операторов
- •Умножение операторов
- •Матрицы операторов
- •Изменение базиса 3, 11
- •Подобие 11
- •§ 2. Характеристический многочлен
- •VII. Билинейные и квадратичные формы § 1. Билинейные формы
- •§ 2. Квадратичные формы
- •Приведение к каноническому виду
- •VIII. Гиперповерхности и поверхности второго порядка
- •Классификация линий второго порядка
- •Окружность
- •Гипербола
- •Парабола
- •Классификация поверхностей второго порядка
- •Заключение
- •Список литературы
- •Линейная алгебра
- •650002, Г. Кемерово, ул. Институтская, 7
- •650002, Г. Кемерово, Институтская, 7
Прямая как линия пересечения плоскостей
Прямая
в пространстве может быть определена
как линия пересечения двух непараллельных
плоскостей
и
,
то есть как множество точек, удовлетворяющих
системе двух линейных уравнений
(V.5)
Справедливо
и обратное утверждение: система двух
независимых линейных уравнений вида
(V.5)
определяет прямую как линию пересечения
плоскостей (если они не параллельны).
Уравнения системы (V.5)
называются общим
уравнением прямой
в пространстве
.
Пример V.12. Составить каноническое уравнение прямой, заданной общими уравнениями плоскостей
![]()
Решение. Чтобы написать каноническое уравнение прямой или, что тоже самое, уравнение прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например Oyz и Oxz.
Точка
пересечения прямой с плоскостью Oyz
имеет абсциссу
.
Поэтому, полагая в данной системе
уравнений
,
получим систему с двумя переменными:
![]()
Ее
решение
,
вместе с
определяет точку
искомой прямой. Полагая в данной системе
уравнений
,
получим систему
![]()
решение
которой
,
вместе с
определяет точку
пересечения прямой с плоскостьюOxz.
Теперь
запишем уравнения прямой, проходящей
через точки
и
:
или
,
где
будет направляющим векто-ром этой
прямой.
Пример
V.13.
Прямая задана
каноническим уравнением
.
Составить общее уравнение этой прямой.
Решение. Каноническое уравнение прямой можно записать в виде системы двух независимых уравнений:
![]()
Получили
общее уравнение прямой, которая теперь
задана пересечением двух плоскостей,
одна из которых
параллельна осиOz
(
),
а другая
– осиОу
(
).
Данную прямую можно представить в виде линии пересечения двух других плоскостей, записав ее каноническое уравнение в виде другой пары независимых уравнений:
![]()
Замечание. Одна и та же прямая может быть задана различными системами двух линейных уравнений (то есть пересечением различных плоскостей, так как через одну прямую можно провести бесчисленное множество плоскостей), а также различными каноническими уравнениями (в зависимости от выбора точки на прямой и ее направляющего вектора).
Ненулевой вектор, параллельный прямой линии, будем называть ее направляющим вектором.
Пусть
в трехмерном пространстве
задана прямая l,
проходящая через точку
,
и ее направляющий вектор
.
Любой
вектор
,
где
,
лежащий на прямой, коллинеарен с вектором
,
поэтому их координаты пропорциональны,
то есть
.
(V.6)
Это уравнение называется каноническим уравнением прямой. В частном случае, когда ﻉ есть плоскость, получаем уравнение прямой на плоскости
.
(V.7)
Пример
V.14.
Найти уравнение прямой, проходящей
через две точки
,
.
Будем
считать вектор
направляющим, тогда уравнение искомой
прямой имеет вид
,
где
,
,
.
Удобно уравнение (V.6) записать в параметрической форме. Так как координаты направляющих векторов параллельных прямых пропорциональны, то, полагая
,
получим

где
t
– параметр,
.
Расстояние от точки до прямой
Рассмотри
двухмерное евклидовое пространство ﻉ
с
декартовой системой координат. Пусть
точка
ﻉ
и
lﻉ.
Найдем расстояние от этой точки до
прямой. Положим
,
и прямая l
задается уравнением
(рис.V.8).
Расстояние
,
вектор
,
где
– нормальный вектор прямой l,
и
– коллинеарны, поэтому их координаты
пропорциональны, то есть
,
следовательно,
,
.

Рис. V.8
Отсюда
или умножая эти уравнения
наA
и B
соответственно и складывая их, находим
,
отсюда
![]()
или
![]()
.
Формула
(V.8)
определяет
расстояние от точки
до прямой
.
Пример
V.15.
Найти уравнение прямой, проходящей
через точку
перпендикулярно прямойl:
и найти расстояние от
до прямойl.
Из
рис. V.8
имеем
,
а нормальный вектор прямойl
.
Из условия перпендикулярности имеем
![]()
или
.
Так
как
,
то
.
(V.9)
Это
и есть уравнение прямой, проходящей
через точку
,перпендикулярно
прямой
.
Пусть
имеем уравнение прямой (V.9),
проходящей через точку
,
перпендикулярна прямойl:
.
Найдем расстояние от точки
до прямойl,
используя формулу (V.8).
Для
нахождения искомого расстояния достаточно
найти уравнение прямой, проходящей
через две точки
и точку
,
лежащую на прямой в основании
перпендикуляра. Пусть
,
тогда
.
(V.10)
Так
как
,
а вектор
,
то
.
(V.11)
Поскольку
точка
лежит на прямойl,
то имеем еще одно равенство
или
![]()
Приведем систему к виду, удобному для применения метода Крамера
![]()
Ее решение имеет вид
,
.
(V.12)
Подставляя (V.12) в (V.10), получаем исходное расстояние.
Пример
V.16.
В двухмерном пространстве задана точка
и прямая
.
Найти расстояние от точки
до прямой; записать уравнение прямой,
проходящей через точку
перпендикулярно заданной прямой и найти
расстояние от точки
до основания перпендикуляра к исходной
прямой.
По формуле (V.8) имеем
.
Уравнение
прямой, содержащей перпендикуляр, найдем
как прямую, проходящую через две точки
и
,
воспользовавшись формулой (V.11).
Так как
,
то, с учетом того, что
,
а
,
имеем
.
Для
нахождения координат
имеем систему с учетом того, что точка
лежит на исходной прямой
![]()
Следовательно,
,
,
отсюда
.
Рассмотрим
трехмерное евклидовое пространство ﻉ.
Пусть точка
ﻉ
и
плоскость ﻉ.
Найдем расстояние от этой точки
до плоскости,
заданной уравнением
(рис.V.9).

Рис. V.9
Аналогично
двухмерному пространству имеем
и вектор
,
а
,
отсюда
.
(V.13)
Уравнение
прямой, содержащей перпендикуляр к
плоскости ,
запишем как уравнение прямой, проходящей
через две точки
и
,
лежащую в плоскости:
.
(V.14)
Для
нахождения координат точки
к двум любым равенствам формулы (V.14)
добавим уравнение
.
(V.15)
Решая
систему трех уравнений (V.14),
(V.15),
найдем
,
,
– координаты точки
.
Тогда уравнение перпендикуляра запишется
в виде
.
Для
нахождения расстояния от точки
до плоскости
вместо формулой (V.13)
воспользуемся
.
