
- •Фгбоу впо «Тюменская государственная сельскохозяйственная академия»
- •Предисловие
- •Введение
- •Основные понятия и определения, принятые в теории механизмов и машин
- •Глава 1.Структура механизмов
- •§ 1.1Классификация звеньев в механизмах
- •§ 1.2Классификация кинематических пар
- •§ 1.3Классификация кинематических цепей
- •§ 1.4Классификация механизмов
- •§ 1.5Степень подвижности пространственных и плоских механизмов
- •§ 1.6Принцип образования механизмов по л.В. Ассуру. Классификация структурных групп по л.В. Ассуру
- •1.6.1 Порядок проведения структурного анализа
- •§ 1.7Пример выполнения структурного анализа шестизвенного механизма
- •Глава 2 кинематическое исследование плоских рычажных механизмов
- •§ 2.1 Основные понятия и определения, принятые в кинематическом анализе
- •§ 2.2 Определение положений и траекторий движения звеньев механизма
- •§ 2.3 Проектирование (синтез) плоских рычажных механизмов
- •2.3.1 Синтез коромыслового механизма по заданному коэффициенту изменения средней скорости Кυ (метод г.Г. Баранова)
- •2.3.2 Синтез кулисного механизма с качающейся кулисой
- •2.3.3 Синтез кулисного механизма с вращающейся кулисой
- •2.3.4Синтез кривошипно-ползунного механизма
- •§ 2.4 Определение скоростей, ускорений и их направлений
- •2.4.1 Определение скоростей и ускорений отдельных точек звеньев механизма
- •2.4.2 Определение скоростей и ускорений методом планов
- •II класса 1 вида
- •Решение.Рассчитывается масштабный коэффициент плана скоростей
- •II класса 3 вида
- •Задача 3. Кинематический анализ структурной группы
- •II класса 2 вида
- •Задача 4. Кинематический анализ структурной группы
- •II класса 4 вида
- •II класса 5 вида
- •2.4.3 Определение перемещений, скоростей и ускорений методом построения кинематических диаграмм
- •Глава 3 динамический анализ плоских рычажных механизмов
- •§ 3.1Силовое исследование плоских рычажных механизмов
- •3.1.1 Классификация сил, действующих на звенья механизма
- •3.1.2 Определение движущих сил. Механические характеристики машин
- •3.1.3 Определение сил тяжести и сил инерции звеньев механизма
- •3.1.3.1 Определение сил тяжести
- •3.1.3.2 Определение сил инерции и моментов от сил инерции
- •3.1.4 Определение реакций в кинематических парах
- •3.1.4.1 Условие статической определимости кинематической цепи
- •3.1.4.2 Порядок проведения силового расчета
- •3.1.4.3 Определение реакций методом планов
- •II класса 2 вида
- •II класса 3 вида
- •II класса 4 вида
- •II класса 5 вида
- •3.1.5 Силовой расчет ведущего звена
- •3.1.6 Определение уравновешивающей силы принципом возможных перемещений
- •3.1.7 Определение уравновешивающей силы с помощью «жесткого» рычага н.Е. Жуковского
- •3.1.8 Кинетостатический (силовой) расчет шестизвенного механизма (пример выполнения)
- •3.1.9 Приведение сил и масс в механизмах
- •3.1.9.1 Приведенные силы и моменты
- •3.1.9.2 Приведенные массы и приведенные моменты инерции.
- •§ 3.2Анализ движения механизмов
- •3.2.1Режимы движения механизмов
- •3.2.2 Механический коэффициент полезного действия (кпд)
- •3.2.2.1. Определение кпд при последовательном соединении
- •3.2.2.2 Определение кпд при смешанном соединении
- •3.2.3 Неравномерность движения механизмов
- •3.2.3.1. Средняя скорость механизма и его коэффициент
- •3.2.3.2 Связь между приведенным моментом инерции, кинетической
- •3.2.3.3 Маховик и его физический смысл
- •3.2.3.4 Приближенный метод определения момента
- •3.2.3.5 Определение момента инерции маховика
- •3.2.3.6 Определение размеров махового колеса
- •3.2.4 Регулирование механизмов
- •3.2.4.1 Типы регуляторов. Задачи регулирования.
- •3.2.4.2. Кинетостатика центробежного регулятора
- •3.2.4.3. Характеристика регулятора
- •3.2.4.4 Устойчивость регулятора
- •3.2.4.5 Нечувствительность регулятора
- •3.2.5 Уравновешивание механизмов
- •3.2.5.1 Задачи уравновешивания
- •3.2.5.2 Уравновешивание вращающихся масс,
- •3.2.5.3 Уравновешивание вращающихся масс,
- •3.2.5.4 Полное и частичное уравновешивание результирующей
- •1 Определение общего центра тяжести механизма
- •2 Частичное уравновешивание результирующей силы инерции
- •3 Полное уравновешивание результирующей силы инерции
- •§3.3Трение в механизмах
- •3.3.1 Виды трения. Закон Амонтона - Кулона
- •3.3.2 Трение в поступательной кинематической паре
- •3.3.3 Трение клинчатого ползуна
- •3.3.4 Трение в винтовой кинематической паре
- •3.3.5 Трение во вращательной кинематической паре
- •Глава 4синтез механизмов с высшими кинематическими парами
- •§ 4.1Синтез кулачковых механизмов
- •4.1.1 Применение и классификация кулачковых механизмов
- •4.1.2 Основные понятия и определения, связанные с профилем кулачка
- •4.1.3 Силовое исследование кулачкового механизма
- •4.1.4Закон движения толкателя и его выбор
- •1 Линейный закон движения толкателя
- •3 Косинусоидальный закон
- •4 Синусоидальный закон
- •5 Трапецеидальный закон
- •6Линейно – убывающий закон
- •4.1.5 Порядок проведения синтеза кулачкового механизма
- •4.1.6 Синтез кулачкового механизма с центральным
- •4.1.7. Синтез кулачкового механизма со смещенным
- •4.1.8 Синтез кулачкового механизма с качающимся
- •4.1.9 Синтез кулачкового механизма с плоским
- •§ 4.2Синтез зубчатых механизмов
- •4.2.1 Классификация зубчатых механизмов (передач)
- •4.2.2 Основной закон зацепления
- •4.2.3 Передаточное отношение цилиндрических редукторов
- •4.2.4 Внешнее эвольвентное зацепление
- •4.2.4.1 Эвольвента и ее свойства
- •4.2.1.4 Свойства эвольвенты
- •4.2.4.2. Геометрические элементы зубчатых колес
- •4.2.4.3. Построение эвольвентного внешнего зацепления
- •4.2.4.4 Линия зацепления. Дуга зацепления. Коэффициент перекрытия
- •4.2.4.5 Коэффициент удельного скольжения зубьев
- •4.2.4.6 Методы обработки цилиндрических зубчатых колес
- •4.2.4.7 Подрезание профилей зубьев при изготовлении.
- •4.2.4.8 Минимальная сумма зубчатых колес
- •4.2.4.9 Корригирование зубчатых колес
- •4.2.5 Внутреннее эвольвентное зацепление
- •4.2.6 Циклоидальное зацепление
- •4.2.7 Зацепление м.Л. Новикова
- •4.2.8 Многозвенные зубчатые механизмы
- •4.2.8.1 Многозвенные механизмы с неподвижными осями
- •4.2.8.2 Многозвенные механизмы с подвижными осями
- •4.2.8.3 Кинематика планетарных редукторов
- •4.2.8.4 Особенности проектирования планетарных редукторов
- •5 Приложения
- •Литература
- •Содержание
- •Глава 3. Динамический анализ плоских рычажных механизмов
- •§ 3.1. Силовое исследование плоских рычажных механизмов 48
- •§ 3.2.Анализ движения механизмов 73
- •§3.3. Трение в механизмах 111
- •Глава 4. Синтез механизмов с высшими кинематическими парами
- •§ 4.1.Синтез кулачковых механизмов 119
- •§ 4.2. Синтез зубчатых механизмов 137
3.2.2 Механический коэффициент полезного действия (кпд)
Энергия, подводимая к механизму в виде работы движущих сил Адв.с.и моментов за цикл установившегося движения, расходуется на совершение полезной работыАп.с., а также на совершение работыАFтр, связанной с преодолением сил трения в кинематических парах и сил сопротивления среды.
Рассмотрим установившееся движение. Приращение кинетической энергии равно нулю, т.е.
= 0.
При этом работы сил инерции и сил тяжести равны нулю АРи = 0,АG = 0. Тогда для установившегося движения работа движущих сил равна
Адв.с.=Ап.с.+ АFтр.
Следовательно, за полный цикл установившегося движения работа всех движущих сил равна сумме работ сил производственных сопротивлений и непроизводственных сопротивлений (сил трения).
Механический коэффициент полезного действия η (КПД) – отношение работы сил производственных сопротивлений к работе всех движущих сил за время установившегося движения:
η = .
(3.61)
Как видно из формулы (3.61), КПД показывает, какая доля механической энергии, приведенной к машине, полезно расходуется на совершение той работы, для которой машина создана.
Отношение работы сил непроизводственных сопротивлений к работе движущих сил называется коэффициентом потерь:
ψ =.
(3.62)
Механический коэффициент потерь показывает, какая доля механической энергии, подведенной к машине, превращается в конечном счете в теплоту и бесполезно теряется в окружающем пространстве.
Отсюда имеем связь между КПД и коэффициентом потерь
η =1- ψ.
Из этой формулы вытекает, что ни в одном механизме работа сил непроизводственных сопротивлений не может равняться нулю, поэтому КПД всегда меньше единице (η <1). Из этой же формулы следует, что КПД может равняться нулю, еслиАдв.с=АFтр.Движение, при котором Адв.с= АFтр называется холостым. КПД не может быть меньше нуля, т.к. для этого необходимо, чтобыАдв.с<АFтр.Явление, при котором механизм находится в покое и при этом удовлетворяется условие Адв.с<АFтр, называется явлением самоторможения механизма. Механизм, у которого η = 1, называетсявечным двигателем.
Таким образом, коэффициент полезного действия находится в пределах
0 η 1.
Рассмотрим определение КПД при различных способах соединения механизмов.
3.2.2.1. Определение кпд при последовательном соединении
Пусть имеется nпоследовательно соединенных между собой механизмов (рисунок 3.16).
Адв.с. 1 А12 А23 А3Аn-1nAn
…
Рисунок 3.16 - Схема последовательно соединенных механизмов
Первый механизм приводится в движение движущими силами, которые совершают работу Адв.с. Так как полезная работа каждого предыдущего механизма, затрачиваемая на производственные сопротивления, является работой движущих сил для каждого последующего механизма, то КПД первого механизма будет равняться:
η1 =А1 /Адв.с..
Для второго механизма КПД равняется:
η2 =А2 /А1.
И, наконец, для n-го механизма КПД будет иметь вид:
ηn =Аn /Аn-1
Общий коэффициент полезного действия равен:
η1n =Аn /Адв.с.
Величина общего КПД может быть получена, если перемножить КПД каждого отдельного механизма, а именно:
η1n=
η1 η2
η3 …ηn=.
Следовательно, общий механический коэффициент полезного действия последовательно соединенных механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему:
η1n= η1 η2 η3 …ηn. (3.63)