
- •2.Аксиомы статики
- •3. Связи и их реакции. Аксиома связей. Основные виды связей.
- •5. Равнодействующая системы сходящихся сил. Геометрический и аналитический способы определения равнодействующей.
- •11.Векторный момент силы относительно центра. Выражение векторного момента силы в виде векторного произведения. Аналитическое выражение момента силы относительно центра.
- •12. Момент силы относительно оси. Аналитическое выражение момента силы относительно оси.
- •13. Связь между моментом силы относительно оси и векторным моментом силы относительно точки.
- •9. Сложение параллельных сил.
- •9. Пара сил. Векторный момент пары сил. Алгебраический момент пары сил.
- •10. Свойства пар сил. Эквивалентность пар. Теоремы об эквивалентности пар.
- •10. Сложение пар сил. Условие равновесия системы пар сил.
- •15. Основная лемма статики о параллельном переносе силы.
- •16. Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.
- •18. Инварианты приведения пространственной системы сил.
- •20. Уравнения равновесия плоской системы сил.( Три формы).
- •19. Статически определимые и неопределимые системы. Расчет составных конструкций.
- •30. Распределенные нагрузки.
- •22. Трение скольжения. Законы трения. Угол и конус трения. Условия равновесия тел на шероховатой поверхности.
- •23. Угол и конус трения. Условия равновесия тела на шероховатой поверхности
- •21. Расчет плоских ферм. Классификация ферм. Методы расчета плоских ферм. Леммы о нулевых стержнях.
- •25. Случаи приведения пространственной системы сил к простейшему виду.
- •17. Приведение системы сил к динаме. Уравнение центральной оси. Четыре случая приведения сил
- •20. Уравнение равновесия пространственной системы сил. Частные случаи.
- •25,26,29. Центр параллельных сил. Центр тяжести твердого тела. Центр тяжести однородного объема, площади, материальной линии. Статический момент площади относительно оси.
- •27. Методы нахождения центра тяжести (симметрии, разбиения, дополнения).
- •28. Центры тяжести дуги окружности и кругового сектора. Центр тяжести пирамиды.
- •31.Предмет кинематики. Пространство и время в классической механике. Относительность движения. Траектория движения точки. Основная задача кинематики.
- •33. Скорость точки при векторном способе задания движения.
- •34. Ускорение точки при векторном способе задания движения.
- •35. Скорость и ускорение при координатном способе задания движения.
- •36. Скорость точки при естественном способе задания движения.
- •37. Естественный трехгранник. Разложение ускорения по естественным осям. Касательное и нормальное ускорение.
- •37. Частные случаи движения точки. Смысл касательного и нормального ускорения.
- •39. Кинематика твердого тела. Виды движения твердого тела. Поступательное движение твердого тела.
- •40. Вращательное движение твердого тела вокруг неподвижной оси. Уравнение вращательного движения тела. Угловая скорость и угловое ускорение.
- •41. Равномерное и равнопеременное вращение
- •42. Определение кинематических характеристик движения точек вращающегося тела. Траектории, закон движения. Скорость и ускорение точек вращающегося тела.
- •43. Выражение скорости и ускорения точки вращающегося тела в виде векторных произведений.
- •7. Теорема о трех силах
- •8. Расчет усилий в стержнях фермы методом вырезания узлов
- •38. Равномерное и равнопеременное движение точки
11.Векторный момент силы относительно центра. Выражение векторного момента силы в виде векторного произведения. Аналитическое выражение момента силы относительно центра.
Векторный
момент силы относительно центра
– векторное произведение радиус-вектора
точи приложения силы относительно
центра на вектор силы.
Теорема Вариньона: Если система сил, приложенных к абсолютно твердому телу имеет равнодействующую, то момент равнодействующей относительно произвольного центра (оси) равен сумме моментов всех сил системы относительно того же центра (оси).
Алгебраическим моментом силы F относительно некоторого центра называется взятое со знаком + или - произведение модуля силы F на плечо (кротчайшее расстояние от точки до линии действия силы). Момент положителен, если сила стремиться вращать плоскость действия против часовой стрелки и наоборот. (M=F*h) Но при этом h можно выразить через радиус-вектор r (h=r*sin α), тогда M = F*r*sin α = (F x r). Получаем, что векторный момент силы относительно точки – векторная величина.
12. Момент силы относительно оси. Аналитическое выражение момента силы относительно оси.
Моментом
силы относительно оси
называется
момент проекции силы на плоскость,
перпендикулярную оси, относительно
точки пересечения оси с этой плоскостью.
Момент относительно оси положителен, если сила стремится вращать плоскость перпендикулярную оси против часовой стрелки, если смотреть навстречу оси.
Момент силы относительно оси равен 0 в двух случаях:
Если сила параллельна оси
Если сила пересекает ось
Если линия действия и ось лежат в одной плоскости, то момент силы относительно оси равен 0.
13. Связь между моментом силы относительно оси и векторным моментом силы относительно точки.
Mz(F)=Mo(F)*cosα Момент силы, относительно оси равен прекции вектора момента сил, относительно точки оси на эту ось.
9. Сложение параллельных сил.
Равнодействующая двух параллельных сил, направленных в одну сторону равна алгебраической сумме модулей составляющих сил. Линия действия равнодействующей делит отрезок, заключённый между точками приложения сил внутренним образом на части, обратно пропорциональные модулям этих сил. Две параллельные, противоположно направленные силы, не равные по модулю, эквиваленты равнодействующей, модуль которой равен разности модулей слагаемых сил и направлены в сторону большей силы. Линия действия равнодействующей делит отрезок, заключённый между точками приложения сил внутренним образом на части, обратно пропорциональные модулям этих сил. Если модули противоположно направленных сил равны, то такая система не имеет равнодействующей, она сообщает свободному телу вращательное движение и называется парой сил.
9. Пара сил. Векторный момент пары сил. Алгебраический момент пары сил.
Пара сил – совокупность двух противоположно направленных равных по модулю параллельных сил, действующих по несовпадающим линиям действия.
Плоскость, в которой действует пара сил, называется плоскостью действия пары.
Момент пары сил не зависит от выбора центра привидения, а определяется лишь модулями сил и расстоянием между л.д. – плечом пары.
Векторный момент пары сил – вектор, равный векторному произведению радиус-вектора ρ, соединяющий точки приложения сил на вектор силы и направленный перпендикулярно плоскости действия пары сил таким образом, чтобы, смотря ему навстречу, пара сил стремилась поворачивать плоскость действия против часовой стрелки.
Алгебраический момент пары сил равен произведению модуля одной из сил, составляющих пару, на плечо пары и имеет знак в соответствии с правилом знаков для момента силы.