Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
phiz_lek.doc
Скачиваний:
91
Добавлен:
29.02.2016
Размер:
1.25 Mб
Скачать

8. Степени свободы молекул. Распределение энергии по степеням свободы. Внутренняя энергия идеального газа.

Средняя кинетическая энергия поступательного движения газовых молекул равна

mV2/2 = 3кТ/2,

где к – постоянная Больцмана, Т – абсолютная температура газа.

Однако, кроме поступательного движения газовых молекул могут совершаться и другие виды движения: вращение и колебание, с которыми тоже связана некоторая энергия. Таким образом, полный запас кинетической энергии молекулы не исчерпывается энергией лишь поступательного движения, она может обладать кинетической энергией вращения и колебания.

Для того чтобы подсчитать среднюю кинетическую энергию молекулы, приходящуюся на все виды ее движения, необходимо ввести понятие о степенях свободы молекулы и выяснить, какая доля общей энергии приходится на одну степень свободы.

Под числом степеней свободы любой механической системы понимают число независимых движений, которые одновременно может совершать эта система; или другими словами, число степеней свободы – это число независимых переменных, определяющих положение системы в пространстве.

Во многих случаях молекулу одноатомного газа можно рассматривать как материальную точку, которой приписывают три степени свободы поступательного движения (вращательными степенями свободы материальная точка обладать не может). Система Nматериальных точек, могущих двигаться независимо друг от друга, имеет 3Nстепеней свободы. Если же отдельные точки в системе как-то связаны друг с другом, то число степеней свободы такой системы будет меньше 3N. Например, абсолютно твердое тело, могущее как угодно двигаться в пространстве, обладает 6 степенями свободы, из которых 3 отвечают поступательному движению (три независимо изменяющиеся координаты, определяющие вращение центра тяжести тела) и три – вращательному движению.

Многие газы, например, H2,O2,N2,окись углерода СО и другие состоят из молекул, построенных из двух атомов. В первом приближении двухатомную молекулу можно рассматривать как систему из двух материальных точек, расположенных на некотором расстоянии друг от друга и связанных между собой силами взаимодействия. Можно допустить, что связь между атомами молекул является абсолютно жесткой, т.е. расстояние между атомами не изменяется, тогда такой молекуле следует приписать 5 степеней свободы, а именно: 3 поступательного движения и 2 вращательного движения. Такая молекула кроме трех поступательных движений может совершать еще 2 вращательных движения вокруг 2-х взаимно перпендикулярных осей, составляющих прямой угол с линией, соединяющих атомы. Вращение вокруг самой оси молекул мы не принимаем во внимание, т.к. оно лишено смысла. Таким образом, 2-х атомная молекула обладает пятью степенями свободы (i= 5). Подобно трехатомные и многоатомные линейные молекулы обладают пятью степенями свободы: а именно: 3 поступательного движения и 2 вращательного движения (i= 5). Трехатомные и многоатомные нелинейные молекулы имеют 6 степеней свободы: 3 поступательного и 3 вращательного движения. Естественно, что жесткой связи между атомами не существует. Поэтому для реальных молекул иногда необходимо учитывать также степени свободы колебательного движения. Так 2-х атомная молекула с нежесткой связью между атомами будет обладать, кроме 3 поступательных и 2 вращательных степеней свободы, одной колебательной степенью свободы, соответствующей переменной, определяющей взаимное расстояние между атомами, которое в этом случае будет изменяться. Следовательно, в общем случае 2-х атомные молекулы обладают 6 степенями свободы.

Ни одна из поступательных степеней свободы не имеет преимущества перед другими, все они равноправны, поэтому на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения средней кинетической энергии поступательного движения молекул газа, а именно

10/3 = (1/2)кТ.

Можно показать, что этот результат относится к вращательному и колебательному движениям молекул, т.е. справедливым является следующее положение: для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная кТ/2, а на каждую колебательную степень свободы - в среднем энергия, равная кТ(теорема Больцмана о равномерном распределении энергии по степеням свободы молекул).

Колебательная степень свободы «обладает» вдвое большей энергией, потому что на нее приходится не только кинетическая энергия (как в случае поступательного и вращательного движений), но и потенциальная энергия, причем средние значения кинетической и потенциальной энергий одинаковы. Таким образом, средняя энергия молекулы

 =(i/2)кТ,

где i– сумма числа поступательных, вращательных и удвоенного числа колебательных степеней свободы молекул

I = Iпост+ Iвращ + 2iколеб

В классической теории рассматриваются молекулы с жесткой связью между атомами.

Сумма всех видов энергий движения и взаимодействия частиц тела или системы тел называется внутренней энергией тела или системы. В состав внутренней энергии тела входит энергия всех видов движения, а именно: энергия поступательного и вращательного движения молекул, энергия колебательного движения атомов в молекулах, а также энергия взаимодействия входящих в тело молекул. Внутренняя энергия не включает в себя кинетическую и потенциальную энергию тела, как целого.

Если известен закон взаимодействия между частицами в том или ином теле, то молекулярно-кинетическая теория позволяет рассчитать внутреннюю энергию этого тела. Проще всего определить внутреннюю энергию идеального газа. Так как в идеальном газе взаимодействие между молекулами отсутствует (взаимная потенциальная энергия молекул равна нулю), то его внутренняя энергия складывается только из энергии теплового движения отдельных молекул. Тогда внутренняя энергия, отнесенная к одному молю газа, будет равна сумме кинетических энергий NАмолекул:

U0 = (i/2)kTNA = (i/2)RT.

Внутренняя энергия для произвольной массы М газа

U = (M/)i RT/2 = Z i RT/2.

Из полученной формулы видно, что внутренняя энергия данной массы идеального газа зависит только от температуры и совершенно не зависит от объема, занимаемого газом при данной температуре. Для реального газа это не так.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]