Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
phiz_lek.doc
Скачиваний:
91
Добавлен:
29.02.2016
Размер:
1.25 Mб
Скачать

1.Световые волны

Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других - как поток особых частиц (фотонов). Длительный путь развития учения о свете привел к современным представлениям о двойственной корпускулярно-волновой природе света. Мы с Вами вначале рассмотрим круг явлений, в основе которых лежит волновая природа света.

Теоретические исследования Максвелла о распространении электромагнитных волн, экспериментальные измерения скорости их распространения в пустоте, оказавшейся равной скорости распространения света в пустоте, и другие исследования позволили выдвинуть предположение о чисто электромагнитной природе света.

Электромагнитная теория света явилась существенным шагом вперед в понимании природы оптических явлений. Свет оказался частным случаем электромагнитных волн с длиной волны от l = 400 нм (фиолетовый) до l=7бО нм (красный). Только этот интервал длин электромагнитных волн оказывает непосредственное воздействие на наш глаз и является собственно светом. Однако и более коротковолновое (l<400 нм -ультрафиолетовое) и более длинноволновое излучение (l>760 нм -инфракрасное) имеют качественно одну и ту же электромагнитную природу и отличаются лишь методами их возбуждения и обнаружения.

В электромагнитной волне колеблются векторы Е и Н, причем Е^Н (рис.1). Как показывает опыт, физиологическое, фотохимическое, фотоэлектрическое и другие действия света вызываются колебаниями вектора напряженности электрического поля Е, о котором говорят поэтому как о световом векторе. О магнитном векторе Н световой волны мы упоминать почти не будем.

Рис.1. Взаимное расположение векторов Е и Н в световой волне.

Модуль амплитуды светового вектора мы будем обозначать А (иногда Ем). Соответственно изменение во времени и пространстве проекции светового вектора на направление, вдоль которого он колеблется, будет описываться уравнением

Е = Асоs(wt – kr + a) – уравнение световой волны (1)

где k - волновое число (k = 2p/l), r- расстояние, отсчитываемое вдоль направления распространения световой волны. Для плоской световой волны, распространяющейся в непоглощающей среде, А = const, для сферической волны А убывает как 1/r и т.д.

Отношение скорости распространения световой волны в вакууме (с) к ее скорости в некоторой среде V называется абсолютным показателем преломления этой среды и обозначается буквой n. Таким образом,

n = с/ V. (2)

Из электромагнитной теории следует, что n = Öem, где e и m - диэлектрическая и магнитная проницаемости среды. Для подавляющего большинства прозрачных веществ m практически не отличается от единицы. Поэтому можно считать, что n = Öe. Эта формула связывает оптические и электрические свойства вещества. В эту формулу надо подставлять e, полученное для соответствующей частоты, так как n зависит от частоты (длины волны) света.

Значения показателя преломления характеризуют оптическую плотность cреды. Среда с большим n называется оптически более плотной, чем cреда с меньшим n, и наоборот.

Как уже отмечалось, длины волн видимого света l = 400 - 760 нм. Эти значения относятся к световым волнам в вакууме, В веществе длины световых волн будут иными. В случае колебаний частоты n длина волны в вакууме равна l0 = c/n. В среде, в которой фазовая скорость световой волны V = с/n, длина волны имеет значение

l = V/n = c/nn =l0/n.

Т.о. длина световой волны в среде с показателем преломления n связана с длиной волны в вакууме соотношением

l = l0 /n.

Частоты видимых световых волн лежат в пределах

n = (3,9-: 7,5) 1014 Гц.

Частота изменений плотности потока энергии, переносимой волной, будет еще больше (она равна 2n). Уследить за столь быстрыми изменениями потока энергии не могут ни глаз, ни приборы, вследствие чего они регистрируют усредненный по времени поток.

Модуль среднего по времени значения плотности потока энергии, переносимой световой волной носит название интенсивности света I в данной точке пространства. Плотность потока электромагнитной энергии определяется вектором Пойтинга S. Следовательно,

I=|<S>|= |<[ЕН]>|.

Измеряется интенсивность либо в энергетических единицах (Вт/м2), либо в световых единицах, носящих название (лм/м2). Поскольку для электромагнитной волны напряженность Е ~ Н, тогда

I~А2.

Линии, вдоль которых распространяется световая энергия, называются лучами. Усредненный вектор Пойтинга <S> направлен в каждой точке по касательной к лучу. В изотропных средах это направление совпадает с нормалью к волновой поверхности, т.е. с направлением волнового вектора `k. Модуль êkê = k – волновое число.

Несмотря на то, что световые волны поперечны, они не обнаруживают асимметрии относительно луча. Это обусловлено тем, что в естественном свете имеются колебания, совершающиеся в самых различных направлениях, перпендикулярных к лучу, рис.1а. Излучение светящегося тела слагается из волн, испускаемых его атомами, которые (волны), налагаясь друг на друга, образуют испускаемую телом световую волну. В результирующей волне колебания различных направлений представлены с равной вероятностью.

Луч света

Е

Рис.1а. Колебания вектора Е в световой волне естественного света.

В естественном свете колебания различных направлений быстро и беспорядочно сменяют друг друга. Свет, в котором направления колебаний упорядочены каким-либо образом, называется поляризованным. Если колебания светового вектора происходят только в одной проходящей через луч плоскости, свет называется плоско- (или линейно-) поляризованным. Упорядоченность может заключаться в том, что вектор Е поворачивается вокруг луча, одновременно пульсируя по величине. В результате конец вектора Ё описывает эллипс. Такой свет называется эллиптически - поляризованным. Если конец вектора Ё описывает окружность, свет называется поляризованным по кругу.

КОГЕРЕНТНЫЕ ВОЛНЫ. ИНТЕРФЕРЕНЦИЯ ВОЛН.

Пусть в данную точку пространства приходят две световые волны одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления (обе волны поляризованы одинаковым образом):

Когерентностью называется согласованное протекание нескольких колебательных или волновых процессов. Степень согласования может быть различной. Соответственно вводится понятие степени когерентности двух волн.

Пусть в данную точку пространства приходят две световые волны одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления (обе волны поляризованы одинаковым образом):

Е = А1соs(wt + a1),

Е = A2cos(wt + a2), тогда амплитуда результирующего колебания

А2 = А1222 + 2А1А2соsj, (1)

где j = a1 - a2 = const.

Если частоты колебаний в обеих волнах w одинаковы, а разность фаз j возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными.

При наложении когерентных волн они дают устойчивое колебание с неизменной амплитудой А = соnst, определяемой выражением (1) и в зависимости от разности фаз колебаний лежащей в пределах

1 –А2ê £ A £ а12.

Т.о., когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.

Если j = p, тогда соsj = -1 и а1 = А2, a амплитуда суммарного колебания равна нулю, и интерферирующие волны полностью гасят друг друга.

В случае некогерентных волн j непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение <cоsj>t = 0. Поэтому

А2> = <А12> + <А22>,

откуда интенсивность, наблюдаемая при наложении некогерентных волн, равна сумме интенсивностей, создаваемых каждой из волн в отдельности:

I = I1 + I2 .

В случае когерентных волн, соsj имеет постоянное во времени значение (но свое для каждой точки пространства), так что

I = I1 + I2 + 2Ö I1 × I2 cosj (2)

В тех точках пространства, для которых соsj >0, I> I1 +I2; в точках, для которых соsj<0, I<I1+I2. При наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других -минимумы интенсивности. Это явление называется интерференцией волн. Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: I1=I2. Тогда согласно (2) в максимумах I = 4I1, в минимумах же I = 0. Для некогерентных волн при том же условии получается всюду одинаковая интенсивность I = 2I1.

Все естественные источники света (Солнце, лампочки накаливания и т.д.) не когерентны.

Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10-8с и протяженностью около 3 м. Фаза нового цуга никак не связана с фазой предыдущего цуга. В испускаемой телом световой волне излучение одной группы атомов через время порядка 10-8с сменяется излучением другой группы, причем фаза результирующей волны претерпевает случайные изменения.

Некогерентными и не могущими интерферировать др. с др. являются волны, испускаемые различными естественными источниками света. А можно ли вообще для света создать условия, при которых наблюдались бы интерференционные явления? Как, пользуясь обычными некогерентными излучателями света, создать взаимно когерентные источники?

Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части, Если заставить эти две волны пройти разные оптические пути, а потом наложить их др. на др., наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность ³1м, наложатся колебания, соответствующие разным цугам, и разность фаз между ними будет непрерывно изменяться хаотическим образом.

Пусть разделение на две когерентные волны происходит в точке О (рис.2).

О n1 S1

n2 S2 P `V

Рис.2.

До точки Р первая волна проходит в среде показателем преломления n1 путь S1, вторая волна проходит в среде с показателем преломления n2 путь S2. Если в точке О фаза колебания равна wt, то первая волна возбудит в точке Р колебание А1соsw(t – S1/V1), а вторая волна -колебание А2соsw(t – S2/V2), где V1 и V2 - фазовые скорости. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна

j = w(S2/V2 – S1/V1) = (w/c)(n2S2 – n1S1).

Заменим w/с через 2pn/с = 2p/lо (lо - длина волны в),тогда j = (2p/lо)D, где (3)

D= n2S2 – n1S1 = L2 - L1

есть величина, равная разности оптических длин, проходимых волнами путей, и называется оптической разностью хода.

Из (3) видно, что если оптическая разность хода равна целому числу длин волн в вакууме:

D = ±mlо (m = 0,1,2 ), (4)

то разность фаз оказывается кратной 2p и колебания, возбуждаемые в точке Р обеими волнами , будут происходить с одинаковой фазой. Т.о., (4) есть условие интерференционного максимума.

Если оптическая разность хода D равна полуцелому числу длин волн в вакууме:

D = ± (m + 1/2)lо (m =0, 1,2, ...), (5)

то j = ± (2m + 1)p, так что колебания в точке Р находятся в противофазе. Следовательно, (5) есть условие интерференционного минимума.

Принцип получения когерентных световых волн разделением волны на две части, проходящие различные пути, может быть практически осуществлен различными способами - с помощью экранов и щелей, зеркал и преломляющих тел.

Впервые интерференционную картину от двух источников света наблюдал в 1802 году английский ученый Юнг. В опыте Юнга (рис.3) свет от точечного источника (малое отверстие S) проходит через две равноудаленные щели (отверстия) А1 и А2, являющиеся как бы двумя когерентными источниками (две цилиндрические волны). Интерференционная картина наблюдается на экране Ё, расположенном на некотором расстоянии l параллельно А1А2. Начало отсчета выбрано в точке 0, симметричной относительно щелей.

x

P

A1 S1

Плоская св. S O

волна

A2 S2 l

Е

Рис.3

Усиление и ослабление света в произвольной точке Р экрана зависит от оптической разности хода лучей D =L2 – L1. Для получения различимой интерференционной картины расстояние между источниками А1А2=d должно быть значительно меньше расстояния до экрана l. Расстояние х, в пределах которого образуются интерференционные полосы, значительно меньше l. При этих условиях можно положить S2 – S1 » 2l. Тогда S2 – S1 » xd/l. Умножив на n,

подучим

D = nxd/l. (6)

Подставив (6) в (4) получим, что максимумы интенсивности будут наблюдаться при значениях х, равных

хmax = ± mll/d (m = 0, 1,2,.,,.). (7)

Здесь l = l0/n - длина волны в среде, заполняющей пространство между источниками и экраном.

Координаты минимумов интенсивности будут:

хmin = ±(m +1/2)ll/d (m = 0,1,2,...). (8)

Расстояние между двумя соседними максимумами интенсивности называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами - шириной интерференционной полосы. Из (7) и (8) следует, что расстояние между полосами и ширина полосы имеют одинаковое значение, равное

Dх = ll/d. (9)

Измеряя параметры, входящие в (9), можно определить длину волны оптического излучения l. Согласно (9) Dх пропорционально 1/d, поэтому чтобы интерференционная картина была четко различима, необходимо соблюдение упоминавшегося выше условия: d<< l. Главный максимум, соответствующий m = 0, проходит через точку 0. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы (минимумы) первого (m =1), второго (m = 2) порядков и т.д.

Такая картина справедлива при освещении экрана монохроматическим светом (l0 = const). При освещении белым светом интерференционные максимумы (и минимумы) для каждой длины волны будут, согласно формуле (9), смещены друг относительно друга и иметь вид радужных полос. Только для m = 0 максимумы для всех длин волн совпадают, и в середине экрана будет наблюдаться светлая полоса, по обе стороны от которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т д. (ближе к центральной светлой полосе будут находиться зоны фиолетового цвета, дальше – зоны красного цвета).

Интенсивность интерференционных полос не остается постоянной, а изменяется вдоль экрана по закону квадрата косинуса.

Наблюдать интерференционную картину можно с помощью зеркала Френеля, зеркала Лойда, бипризмы Френеля и других оптических устройств, а также при отражении света от тонких прозрачных пленок.

ИНТЕРФЕРЕНЦИЯ СВЕТА ПРИ ОТРАЖЕНИИ ОТ ТОНКИХ ПЛАСТИНОК. ПОЛОСЫ РАВНОЙ ТОЛЩИНЫ И РАВНОГО НАКЛОНА.

Большой практический интерес представляет интерференция в тонких пластинках и пленках.

Пусть на тонкую плоскопараллельную пластину толщиной b, изготовленную из прозрачного вещества с показателем преломления n, из воздуха (nвозд » 1) падает плоская световая волна, которую можно рассматривать как параллельный пучок лучей (рис.4), под углом Q1 к перпендикуляру.

Рис.4.

На поверхности пластины в точке А луч разделится на два параллельных луча света, из которых один образуется за счет отражения от верхней поверхности пластинки, а второй – от нижней поверхности. Разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С, равна

D = nS2 – S1 ± l0/2

где S1 - длина отрезка АВ, а S2 – суммарная длина отрезков АО и ОС, а член ± l0/2 обусловлен потерей полуволны при отражении света от границы раздела двух сред с различными показателями преломления.

Из геометрического рассмотрения получается формула для оптической разности хода дучей1и2:

D = 2bÖ(n2 – sin2Q1) = 2bn соsQ2,

а с учетом потери полуволны для оптической разности хода получим

D = 2bÖ(n2 – sin2Q1) ± l0/2 = 2bn соsQ2 ± l0/2. (10)

Вследствие ограничений, накладываемых временной и пространственной когерентностью, интерференция при освещении пластинки например солнечным светом наблюдается только в том случае, если толщина пластинки не превышает нескольких сотых миллиметра. При освещении светом с большей степенью когерентности (например, лазером) интерференция, наблюдается и при отражении от более толстых пластинок или пленок.

Практически интерференцию от плоскопараллельной пластинки наблюдают, поставив на пути отраженных пучков линзу, которая собирает лучи в одной из точек экрана, расположенного в фокальной плоскости линзы (рис.5). Освещенность в произвольной точке Р экрана зависит от значения величины D, определенной по формуле (10). При D = mlо получаются максимумы, при D = (m + 1/2)lо - минимумы интенсивности (m - целое число).

Пусть тонкая плоскопараллельная пластинка освещается рассеянным монохроматическим светом (рис.5). Расположим параллельно пластинке линзу, в фокальной плоскости которой поместим экран. В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, параллельные плоскости рисунка и падающие на пластинку под углом в), после отражения от обеих поверхностей пластинки соберутся линзой в точке Р и создадут в этой точке освещенность, определяемую значением оптической разности хода.

E

Рис.5.

Лучи, идущие в других плоскостях, но падающие на пластинку под тем же углом Q1¢ соберутся линзой в других точках, отстоящих от центра экрана О на такое же расстояние, как и точка Р. Освещенность во всех этих точках будет одинакова. Т.о. лучи, падающие на пластинку под одинаковым углом Q1¢, создадут на экране совокупность одинаково освещенных точек, расположенных по окружности с центром в точке О. Аналогично, лучи, падающие под другим углом Q"1 создадут на экране совокупность одинаково (но иначе, поскольку А иная) освещенных точек, расположенных по окружности другого радиуса.

В результате на экране возникнет система чередующихся светлых и темных круговых полос с общим центром в точке O). Каждая полоса образована лучами, падающими на пластинку под одинаковым углом Q1. Поэтому получающиеся в описанных условиях интерференционные полосы носят назв. полос равного наклона. При ином расположении линзы относительно пластинки (экран во всех случаях должен совпадать с фокальной плоскостью линзы) форма полос равного наклона будет другой. Роль линзы может играть хрусталик глаза, а экрана - сетчатка глаза.

Согласно (10) положение максимумов зависит от lо. Поэтому в белом свете получается совокупность смещенных др. относительно др. полос, образованных лучами разных цветов, и интерференционная картина приобретает радужную окраску.

Интерференционная картина от тонкого прозрачного клина переменной толщины была изучена еще Ньютоном. Пусть на такой клин (рис.6) падает параллельный пучок лучей.

Рис.6.

Теперь лучи, отразившиеся от разных поверхностей клина, не будут параллельными. Но и в этом случае отраженные волны будут когерентными во всем пространстве над клином, и при любом расстоянии экрана от клина на нем наблюдаться интерференционная картина в виде полос, параллельных вершине клина 0. Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, вследствие чего их называют полосами равной толщины. Практически полосы равной толщины наблюдают, поместив вблизи клина линзу и за ней экран. Роль линзы может играть хрусталик, а роль экрана - сетчатка глаза. При наблюдении в белом свете полосы будут окрашенными, так что поверхность пластинки или пленки представляется имеющей радужную окраску. Такую окраску имеют, например, расплывшиеся по поверхности воды тонкие пленки нефти и масла, а также мыльные пленки. Заметим, что интерференция от тонких пленок может наблюдаться не только в отраженном, но и в проходящем свете.

Классическим примером полос равной толщины являются кольца Ньютона, Они наблюдаются при отражении света от соприкасающихся др. с др. плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис.7).

Рис.7.

Роль тонкой пленки, от поверхности которой отражаются когерентные волны, играет воздушный зазор между пластинкой и линзой (вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают). При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении - эллипсов. Найдем радиусы колец Ньютона, получающиеся при нормальном падении света на пластину. В этом случае sinQ1 = О и D равна удвоенной толщине зазора (предполагается n0 = 1). Из рис. 7 следует, что

R2 = (R – b)2 + r2 » R2 – 2Rb + r2, (12)

где R - радиус кривизны линзы, r - радиус окружности, всем точкам которой соответствует одинаковый зазор b. Считаем b2 < 2Rb. Из (12) b = г2/2R. Чтобы учесть возникающее при отражении от пластинки изменение фазы на p, нужно к D = 2b = r2/R прибавить lо/2. В результате получится

D = r2/R + lо/2. (13)

В точках, для которых

D = m'lо = 2m'(lо/2),

возникают максимумы, в точках, для которых

D = (m' + 1/2)lо = (2m'+ 1)(lо/2),

- минимумы интенсивности.

Оба условия можно объединить в одно:

D = mlо/2,

причем четным значениям m будут соответствовать максимумы, а нечетным -минимумы интенсивности. Подставив сюда (13) и разрешив получившееся уравнение относительно r, найдем радиусы светлых и темных колец Ньютона:

rm = ÖRlо(m- 1)/2, (m =1,2,3,...). (14)

Четным m соответствуют радиусы светлых колец, нечетным m - радиусы темных колей. Значению m =1 соответствует г = 0, в этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.

Измеряя расстояния между полосами интерференционной картины для тонких пластин или радиусы колец Ньютона, можно определить длины волн световых лучей и, наоборот, по известной l найти радиус кривизны линзы.

Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на l0/2, т.е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.

Другим практическим применением интерференции являются прецизионные измерения линейных размеров. Для этого служат приборы, называемые интерферометрами.

Интерферометры также позволяют определять незначительные изменения показателя преломления прозрачных тел (газов, жидкостей и твердых тел) в зависимости от давления, температуры, примесей и т.п.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]