
- •6. 15 Экспериментальное подтверждение
- •6. 16 Плоская волна де Бройля_________________________________________________________
- •6. 17 Свойства волн де Бройля _____________________________________
- •6.2.2. Соотношение неопределенностей гейзенберга
- •6.21 Статистическая интерпретация волновой функции_________________
- •6.22 Физический смысл ψ-функции________________________________
- •6.23 Принцип суперпозиции состояний для волновых функций_________
- •6.24 Основное уравнение нерелятивистской квантовой механики___________________
- •6.25 Стационарное уравнение Шредингера________________________________________
- •6.2.5. Операторы в квантовой механике и их свойства
- •6.26 Математический аппарат квантовой механики___________________________________
- •6.27 Свойства операторов_________________________________________________________________
- •6.28 Линейные и эрмитовы операторы_______________________________________________
- •6.29 Свойства собственных функций______________________________________________
- •6.30 Обобщенный ряд Фурье_____________________________________________________
- •6.31 Средние значения физических величин__________________________________________
- •6.32 Возможность одновременного измерения физических величин____________________
- •6.2.6. Операторы важнейших физических величин
- •6.33 Связь между изображением физических величин операторами и опытом____________
- •6.34 Операторы координаты и импульса___________________________________________
- •6.35 Операторы момента импульса______________________________________________________
- •6.36 Уравнения для собственных значений операторов и _______________________
- •6.37 Операторы энергии____________________________________________________________
- •6.38 Уравнение Шредингера в операторной форме__________________________________
- •6.2.7. Движение свободной частицы
- •6.38 Уравнение Шредингера для стационарных состояний ______________________
- •6.39 Потенциальная яма с бесконечно высокими стенками_________________________
- •6.40 Решение уравнения Шредингера для частицы в яме_____________________________
- •6.41 Энергетический спектр частицы_______________________________________________
- •6.42 Собственные функции и плотности вероятности
- •6.2.9. Отражение и прохождение
- •6.43 Прямоугольный бесконечно протяженный порог______________________________
- •6.45 Коэффициенты отражения и прозрачности____________________________________
- •6.2.10. Потенциальный барьер конечной ширины.
- •6.49 Потенциальный барьер конечной ширины___________________________________
- •6.50 Энергия частицы больше высоты потенциального барьера_____________________
- •6.51 Возможное определение коэффициентов отражения и прозрачности
- •6.52 Энергия частицы
- •6.53 Туннельный эффект________________________________________________________________
- •6.54 Коэффициент прозрачности для прямоугольного барьера______________________
- •6.55 Коэффициент прозрачности для барьера произвольной формы ___________
- •6.56 Выводы относительно поведения классической
- •6.2.11. Линейный гармонический осциллятор
- •6.57 Описание гармонического осциллятора в квантовой механике_________________
- •6.58 Следствия уравнения Шредингера для квантового осциллятора________________
- •6.59 Плотности вероятности обнаружения частицы______________________________
- •6.60 Плотности вероятности
- •6. 14 Длина волны де Бройля___________________________________________________
- •6. 15 Экспериментальное подтверждение
- •6. 16 Плоская волна де Бройля_________________________________________________________
- •6. 17 Свойства волн де Бройля _____________________________________
- •6.2.2. Соотношение неопределенностей гейзенберга
- •6.21 Статистическая интерпретация волновой функции_________________
- •6.22 Физический смысл ψ-функции________________________________
- •6.23 Принцип суперпозиции состояний для волновых функций_________
- •6.24 Основное уравнение нерелятивистской квантовой механики___________________
- •6.25 Стационарное уравнение Шредингера________________________________________
- •6.2.5. Операторы в квантовой механике и их свойства
- •6.26 Математический аппарат квантовой механики___________________________________
- •6.27 Свойства операторов_________________________________________________________________
- •6.28 Линейные и эрмитовы операторы_______________________________________________
- •6.29 Свойства собственных функций______________________________________________
- •6.30 Обобщенный ряд Фурье_____________________________________________________
- •6.31 Средние значения физических величин__________________________________________
- •6.32 Возможность одновременного измерения физических величин____________________
- •6.2.6. Операторы важнейших физических величин
- •6.33 Связь между изображением физических величин операторами и опытом____________
- •6.34 Операторы координаты и импульса___________________________________________
- •6.35 Операторы момента импульса______________________________________________________
- •6.36 Уравнения для собственных значений операторов и _______________________
- •6.37 Операторы энергии____________________________________________________________
- •6.38 Уравнение Шредингера в операторной форме__________________________________
- •6.2.7. Движение свободной частицы
- •6.38 Уравнение Шредингера для стационарных состояний ______________________
- •6.39 Потенциальная яма с бесконечно высокими стенками_________________________
- •6.40 Решение уравнения Шредингера для частицы в яме_____________________________
- •6.41 Энергетический спектр частицы_______________________________________________
- •6.42 Собственные функции и плотности вероятности
- •6.2.9. Отражение и прохождение
- •6.43 Прямоугольный бесконечно протяженный порог______________________________
- •6.45 Коэффициенты отражения и прозрачности____________________________________
- •6.2.10. Потенциальный барьер конечной ширины.
- •6.49 Потенциальный барьер конечной ширины___________________________________
- •6.50 Энергия частицы больше высоты потенциального барьера_____________________
- •6.51 Возможное определение коэффициентов отражения и прозрачности
- •6.52 Энергия частицы
- •6.53 Туннельный эффект________________________________________________________________
- •6.54 Коэффициент прозрачности для прямоугольного барьера______________________
- •6.55 Коэффициент прозрачности для барьера произвольной формы ___________
- •6.56 Выводы относительно поведения классической
- •6.2.11. Линейный гармонический осциллятор
- •6.57 Описание гармонического осциллятора в квантовой механике_________________
- •6.58 Следствия уравнения Шредингера для квантового осциллятора________________
- •6.59 Плотности вероятности обнаружения частицы______________________________
- •6.60 Плотности вероятности
6.38 Уравнение Шредингера в операторной форме__________________________________
Уравнение |
Обычная запись уравнения |
Гамильтониан, оператор полной энергии |
Операторная форма |
Временное уравнение Шредингера |
|
|
|
|
Ψ = Ψ(х, у, z, t). Уравнение Шредингера в операторной форме имеет более общий характер и пригодно для описания движения частицы в произвольных стационарных и нестационарных полях, в частности в случае движения частицы в электромагнитном поле | ||
Стационарное уравнение Шредингера |
|
|
|
[Е — полная энергия частицы; Ψ = Ψ(х, у, z) — координатная часть волновой функции Ψ(x, y, z, t); стационарное уравнение Шредингера в операторной форме имеет регулярные решения лишь при определенных значениях Е, образующих спектр оператора полной энергии]
6.2.7. Движение свободной частицы
Свободная частица — частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия частицы U(х) = соnst и ее можно принять равной нулю. Тогда полная энергия частицы совпадает с ее кинетической энергией.
6.38 Уравнение Шредингера для стационарных состояний ______________________
Уравнение Шредингера ______________________
Ψ(х)
= Аe
iкх
=
(А
= const,
к = const);
♦Зависящая
от времени волновая функция Ψ(x,
t)
представляет
собой монохроматическую волну де Бройля
6.16.
Собственные значения энергии________________________________________________
Энергия
свободной частицы может приниматьлюбые
значения (так
как волновое
число k
может
принимать любые положительные значения),
т. е. энергетический
спектр свободной частицы непрерывен.
Плотность вероятности___________________________________________________________
Мера
вероятности нахождения частицы в момент
времениt
в окрестности
данной точки пространства. В данном
случае плотность вероятности не
зависит ни от времени, ни от координат:
все положения
свободной частицы в пространстве
равновероятны.
6.2.8. ЧАСТИЦА В ОДНОМЕРНОЙ ПОТЕНЦИАЛЬНОЙ ЯМЕ
С БЕСКОНЕЧНО ВЫСОКИМИ СТЕНКАМИ
6.39 Потенциальная яма с бесконечно высокими стенками_________________________
[— ширина ямы; энергия отсчитывается от
дна ямы;k
—
волновое число; Е
—
полная
энергия частицы]
6.40 Решение уравнения Шредингера для частицы в яме_____________________________
Граничные условия_______________________________________________________________
Это
следует из условия непрерывности. За
пределы ямы
частица не
проникает, и в областях х
< 0 и х
> I
волновая
функция Ψ(х) = 0.
Общее решение уравнения Шредингера_____________________________________________
Ψ(0)
= Ψ(
)
= 0, поэтому В
= 0.
Условию
Ψ()
= А sin
k
=
0 удовлетворяет
(n = 1,2,3,...).
Собственные функции____________________________________________________________
А=
(коэффициент находится из условия
нормировки:
)
Нормированные собственные функции_____________________________________________
Значениеп = 0
приводит к тривиальному результату
Ψ(x)
= 0, а отрицательные значения п
— к тем же
функциям, но с отрицательным знаком,
что не дает новых физических решений.
318