
- •Н.А. Кандричин, т.К. Кандричина
- •М.А. Можейко
- •М.А. Можейко
- •В.И. Овчаренко
- •Д.К. Безнюк
- •С.Б. Савелова
- •В.Л. Абушенко
- •А.А. Грицанов
- •Е.О. Попельская
- •Э.К. Дорошевич, в.Л. Абушенко
- •Э.К. Дорошевич, в.Л. Абушенко
- •Т.М. Тузова
- •Е.Г. Боннэр
- •М.А. Можейко
- •А.А. Грицанов, м.А. Можейко
- •А.А. Грицанов, т.В.Комиссарова
- •А.А. Грицанов
- •М.А. Можейко
- •А.П. Ждановский
- •В.И. Овчаренко
- •М.А. Можейко
- •А.А. Ярмолович, е.Н. Вежновец
- •А.А. Грицанов
- •В.И. Овчаренко, а.А. Грицанов
- •А.В. Вязовская
- •А.А. Грицанов
- •А.Р. Усманова
- •А.А. Грицанов
- •С.Д. Лаптенок
- •В.В. Лобач
- •Е.М. Прилепко
- •М.А. Можейко
- •Т.В. Самущик
- •С.В. Воробьёва
- •С.А. Радионова
- •М.А. Можейко
- •В.Л. Абушенко
- •И.А. Воробьева
- •Э.К. Дорошевич, в.Л. Абушенко
- •М.А. Можейко
- •М.А. Можейко
- •М.А. Можейко
- •А.Н. Шуман
- •А.А. Круглов
- •А.Ю. Бабайцев
- •В.Л. Абушенко, а.А. Грицанов, м.А. Можейко
- •Э.К. Дорошевич, в.Л. Абушенко
- •Т.Г. Румянцева
- •А.А. Грицанов
- •М.А. Можейко
- •А.А. Грицанов
- •Э.К. Дорошевич, в.Л. Абушенко
- •Э.К. Дорошевич, в.Л. Абушенко
- •М.А. Можейко
- •Д.К. Безнюк
- •А.А. Грицанов
- •М.А. Можейко
- •Г.Я. Миненков
- •В.В. Мацкевич
- •Д.К. Безнюк, а.А. Грицанов
- •М.А. Можейко
- •М.А. Можейко
- •М.А. Можейко
- •Е.И. Янчук
- •В.И. Овчаренко
- •А.А. Баканов
- •Э.К. Дорошевич, в.Л. Абушенко
- •А.Ю. Бабайцев
- •И.И. Овчаренко
- •Э.К. Дорошевич, в.Л. Абушенко
- •Э.К. Дорошевич, в.Л. Абушенко
- •М.А. Можейко
- •Г.Я. Миненков
- •А.А. Грицанов
- •М.А. Можейко
- •А.А. Грицанов
- •А.А. Грицанов
- •А.Ю. Бабайцев
- •А.В. Ванчукевич
- •Е.В. Петушкова
- •В.И. Овчаренко
- •М.А. Можейко
- •М.А. Можейко
- •А.А. Грицанов
- •И.А. Белоус
- •Д.В. Майборода
- •Г.Я. Миненков
- •И.И. Овчаренко
- •В.И. Овчаренко
- •Н.В. Александрович
- •А.А. Грицанов
- •А.А. Горных
- •Г.Я. Миненков
- •С.В. Воробьёва
- •М.А. Можейко
- •М.А. Можейко
- •А.А. Грицанов
- •Е.А. Коростелева
- •В.Л. Абушенко
- •Е.А. Угринович
- •Г.Я. Миненков
- •О.В. Терещенко, с.В. Сивуха
- •Д.М. Булынко
- •Е.А. Коростелева
- •В.А. Янчук
- •И.Н. Андреева
- •А.Б. Юрко
- •О.В. Терещенко, с.В. Сивуха
- •Д.М. Булынко
- •А.А. Грицанов
- •Г.Я. Миненков
- •П.А. Водопьянов
- •В.Л. Абушенко
- •С.А. Радионова
- •М.А. Можейко
- •Д.М. Булынко
- •Г.Я. Миненков
- •Е.М. Прилепко
- •А.А. Грицанов
- •В.И. Овчаренко
- •Е.А. Коростелева
- •С.А. Радионова
- •Е.А. Угринович
- •М.А. Можейко
- •С.А. Радионова
- •Д.М. Булынко
- •Э.К. Дорошевич, в.Л. Абушенко
- •Э.К. Дорошевич, в.Л. Абушенко
- •Е.А. Кечина
- •В.И. Овчаренко
- •В.И. Овчаренко, а.А. Грицанов
- •В.Л. Абушенко
- •В.Л. Абушенко
- •В.И. Овчаренко
- •В.И. Овчаренко
- •В.И. Овчаренко
- •А.П. Лимаренко
- •А.Н. Шуман
- •А.А. Грицанов, в.В. Лобач
- •Н.С. Семенов
- •А.А. Грицанов
- •А.А. Грицанов
- •В.Л. Абушенко
- •И.А. Воробьева
- •И.А. Воробьева
- •А.А. Грицанов
- •В.Л. Абушенко
- •И.А. Медведева
- •А.Ю. Карачун
- •Г.Я. Миненков
- •Т.Г. Румянцева
- •М.А. Можейко
- •Д.М. Булынко
- •Д.К. Безнюк
- •А.А. Грицанов
- •А.А. Грицанов
- •Н.Н. Леонов
- •А.А. Горных
- •В.Л. Абушенко
- •И.А. Нестерович
- •А.Н. Леванюк
- •Е.В. Хомич
- •А.А. Грицанов, о.А. Грицанов
- •Т.К. Кандричина, н.А. Кандричин
- •В.И. Овчаренко
- •М.А. Можейко, с.Я.Балцевич
- •В.Ф. Берков
- •М.А. Можейко
- •А.А. Грицанов
- •А.Ю. Бабайцев
- •В.В. Мацкевич
- •М.А. Можейко
- •М.А. Можейко, в.А. Можейко
- •М.А. Можейко
М.А. Можейко
СЕЧЕНОВ Иван Михайлович (1829--1905) -- русский физиолог и психолог. Почетный член Петербургской Академии наук (1904). Основные сочинения: “Кому и как разрабатывать психологию” (1873), “Элементы мысли” (1878), “Предметная мысль и действительность” (1892), “Впечатления и действительность” (1890), “Очерк рабочих движений человека” (1901) и др. С. выдвинул программу построения новой психологии, опирающейся на объективный метод и принцип изучения развития психики в реальных жизненных встречах организма со средой, разработал систему взглядов на организм и его психические функции. С. предвосхитил понятие об обратной связи как непременном регуляторе поведения, утвердил новое понимание саморегуляции и системы организации нервно-психической деятельности, обосновал новый подход к функциям органов чувств. В работе “Рефлексы головного мозга” (1863) С. дает естественно-научный анализ деятельности мозга. С. раскрыл причинную обусловленность психических явлений внешними воздействиями, показал, что психика есть результат протекания физиологических процессов возбуждения и торможения в коре мозга, регулятор внешних воздействий и поведения в целом. Переориентация исследовательской мысли с внутреннего “пространства” сознания, открытого для наблюдающего за ним субъекта, на психически регулируемое поведение, открытое для опытной объективной науки, -- величайшая заслуга С. Основой такой переориентации стал рефлекс, трактуемый С. как согласование движения с выполняющим сигнальную роль чувствованием. Учение о рефлексе и физиология органов чувств явились основой объективной психологии. Все сеченовские открытия проецировались на определенную систему философских идей. Открытие центрального торможения исходило, и в свою очередь, обосновывало позиции детерминизма, давало конкретно-научный материал для обоснования проблемы свободы воли. Открытие сенсорных “снарядов” и механизмов построения чувственного образа стало естественно-научной демонстрацией идеи о соответствии познавательного процесса свойствам объектов, формирующих его “ткань”. Внутренняя связь философских и естественно-научных идей, отличающая работы С., определила глубину его учения, которое было воспринято Павловым, Выготским, Бехтеревым и др.
Т.В. Самущик
СИЛЛОГИЗМ (греч. syllogismos -- сосчитывание) -- дедуктивное умозаключение, в котором из двух посылок, связанных одним общим термином, делается заключение. В качестве посылок и вывода С. выступают высказывания: общеутвердительные („Все S есть P“), общеотрицательные („Ни одно S не есть P“), частноутвердительные („Некоторые S есть P“), частноотрицательные („Некоторые S не есть P“), где S (субъект) -- предмет мысли, P (предикат) -- признак, приписываемый предмету мысли. По традиции, идущей от Аристотеля -- создателя теории С., вывод, основанный на логической связи между данными высказываниями, обозначаемыми соответственно A, E, I, O (гласные буквы из латинских слов „affirmo“ -- утверждаю, „nego“ -- отрицаю), называется простым категорическим С. (ПКС). Понятия, которые составляют посылки или заключение С., называются терминами С. Правильно построенный С. состоит из трех терминов: 1) меньшего термина (S) -- субъекта заключения; 2) большего термина (Р) -- предиката заключения; 3) среднего термина (М), присутствующего в обеих посылках, но отсутствующего в заключении.
Все планеты (М) светят отраженным светом (Р).
Венера (S) -- планета (М).
Венера (S) светит отраженным светом (Р).
Высказывание, в котором находится меньший термин, называется меньшей посылкой. Высказывание, в котором находится больший термин, называется большей посылкой. Два главных типа отношений между терминами С., на которых основана логическая необходимость вывода, раскрываются в аксиоме С.: все, что утверждается (отрицается) относительно всего множества, утверждается (отрицается) относительно каждого его элемента. Данный аксиоматический принцип тесно связан с другим принципом, имеющим латинское название nota notae -- „признак признака“: признак признака предмета есть признак самого предмета. То, что отрицается относительно признака предмета, отрицается и относительно самого предмета. Данные аксиомы формируются соответственно для объема и содержания терминов. Из истинных посылок нельзя сделать истинное заключение, если не выполняются общие правила категорического С. Общие правила С. делятся на правила терминов и правила посылок. Правила терминов: 1) в каждом ПКС должно быть только три термина. При нарушении данного правила возникает ошибка „учетверения термина“; 2) средний термин должен быть распределен, т.е. взят во всем объеме, по крайней мере, в одной из посылок; 3) термин, не распределенный ни в одной из посылок, не может быть распределен в заключении. Правила посылок: 4) одна из посылок должна быть общим высказыванием, т.к. из двух частных посылок ничего не следует; 5) одна из посылок должна быть утвердительным высказыванием, т.к. из двух отрицательных посылок ничего не следует; 6) если одна из посылок -- частное высказывание, то и заключение должно быть частным; 7) если одна из посылок -- отрицательное высказывание, то и заключение должно быть отрицательным; 8) из двух утвердительных посылок нельзя сделать отрицательное заключение. По расположению среднего термина различают четыре фигуры ПКС. В первой фигуре ПКС средний термин расположен на месте субъекта в большой посылке и на месте предиката в меньшей посылке:
Все исчезающие виды животных (М) заносятся в красную книгу (Р)
Зубр (S) -- исчезающий вид (М).
Зубр (S) занесен в Красную книгу (P)
Логическая
схема первой фигуры ПКС:
.
Правила первой фигуры ПКС: 1) большая
посылка должна быть общим высказыванием;
2) меньшая посылка должна быть утвердительным
высказыванием. Во второй фигуре ПКС
средний термин расположен на месте
предиката в обеих посылках:
Все растения, произрастающие в данной местности (Р), цветут (М).
Папоротник (S) не цветет (М).
Папоротник (S) не растет в данной местности (P).
Логическая
схема второй фигуры ПКС:
.
Правила второй фигуры ПКС: 1) большая
посылка должна быть общим высказыванием;
2) одна из посылок должна быть отрицательным
высказыванием. В третьей фигуре ПКС
средний термин расположен на месте
субъекта в обеих посылках:
Курение (М) опасно для здоровья (Р).
Курение (М) -- порок (S).
Некоторые пороки (S) -- опасны для здоровья (P).
Логическая
схема третьей фигуры ПКС:
.
Правила третьей фигуры ПКС: 1) меньшая
посылка должна быть утвердительным
высказыванием; 2) заключение должно быть
частным высказыванием. В четвертой
фигуре ПКС средний термин расположен
на месте предиката в большей посылке и
на месте субъекта в меньшей посылке:
Квадрат (Р) -- ромб (М).
Все ромбы (М) -- параллелограммы (S).
Некоторые параллелограммы (S) -- квадраты (Р).
Логическая
схема четвертой фигуры ПКС:
.
Правила четвертой фигуры ПКС: 1) если
одна из посылок -- отрицательное
высказывание, то большая посылка должна
быть общим высказыванием; 2) если большая
посылка -- утвердительное высказывание,
то меньшая должна быть общим высказыванием;
3) если меньшая посылка -- утвердительное
высказывание, то заключение должно быть
частным высказыванием. Четвертая фигура
ПКС используется в практике вывода
редко. Ее сводят обычно к первой фигуре
ПКС. Разновидности фигур ПКС, отличающиеся
друг от друга качественной и количественными
характеристиками высказываний, являющихся
посылками и заключением, называются
модусами фигур ПКС. Для каждой фигуры
ПКС можно построить 64 (4 в третьей степени)
модуса (ибо 4 -- количество всех простых
высказываний (A,
E,
I,
O),
3 -- количество высказываний, допускаемых
в ПКС (две посылки и заключение)). Для
четырёх модусов ПКС можно построить
256 модусов (64х4=256). Модусы фигур ПКС
делятся на правильные, построенные в
соответствии с общими правилами С. и
специальными правилами фигур, и
неправильные. Из 256 логически правильными
являются 24 модуса, среди которых 19
сильных и 5 слабых модусов. Слабый модус
С. отличается от соответствующего
сильного модуса наличием частного
заключения (с квантором „некоторый“)
вместо общего (с квантором „все“).
Правильные сильные модусы первой фигуры:
AAA, EAE, AII, EIO; второй фигуры: EAE, AEE, EIO, AOO;
третьей фигуры: AAI, IAI, AII, EAO, OAO, EIO; четвертой
фигуры: AAI, AEE, IAI, EAO, EIO. Правильные слабые
модусы первой фигуры: AAI,
EAO;
второй фигуры: EAO,
AEO;
четв¸ртой фигуры: AEO.
Современная теория C. включает другие
виды дедуктивных выводов, логический
анализ которых не проводился в
аристотелевской логике. Речь идет о
силлогистических выводах из посылок,
одна из которых, по крайней мере, является
сложным высказыванием. Различают: 1)
разделительно-категорические С. (РКС);
2) условно-категорические С. (УКС); 3) чисто
условные С. (ЧУС); 4) эквивалентно-категорические
С. (ЭКС). Разделительно-категорическим
называется С., одна из посылок которого
разделительное (дизъюнктивное)
высказывание, другая — категорическое
высказывание. Различают два правильных
модуса РКС: 1) утверждающе-отрицающий,
в котором ход рассуждения направлен от
утверждения одних аргументов исключающей
дизъюнкции к отрицанию остальных:
Углы могут быть острыми, тупыми или прямыми.
Данный угол острый.
Данный угол не является ни тупым, ни прямым.
Логические
схемы утверждающе-отрицающего модуса
РКС:
;
.;
2) отрицающе-утверждающий, в котором ход
рассуждения направлен от отрицания
одних аргументов дизъюнкции к утверждению
остальных. Характер дизъюнкции --
исключающий или неисключающий, значения
не имеет:
Иванов сдал экзамены по философии или логике.
Иванов еще не сдал экзамен по философии.
Иванов сдал экзамен по логике.
Логические
схемы отрицающе-утверждающего модуса
РКС:
;
.
Условно-категорическим называется С.,
одна из посылок которого условное
(импликативное) высказывание, другая
-- категорическое высказывание. Различают
два правильных модуса УКС: 1) утверждающий,
в котором из истинности основания
импликации делается вывод об истинности
ее следствия, но не наоборот:
Если углы вертикальны, то они равны.
Данные углы вертикальны.
Данные углы равны.
Логическая
схема утверждающего модуса УКС:
.
2) отрицающий, в котором из ложности
следствия импликации делается вывод о
ложности ее основания, но не наоборот:
Если число делится на 4, то оно делится на 2.
Данное число не делится на 2.
Данное число не делится на 4.
Логическая
схема отрицающего модуса УКС:
.
Чисто условным называется С., в котором
обе посылки условные (импликативные)
высказывания. Заключение первой посылки
является основанием второй посылки:
Если число целое, то оно рациональное.
Если число рациональное, то оно действительное.
Если число целое, то оно действительное.
Логическая
схема ЧУС:.
Эквивалентно-категорическим называется
С., одна из посылок которого -- эквивалентное
высказывание, другая -- категорическое.
Различают два модуса ЭКС: 1) утверждающий,
в котором из истинности одного высказывания
делается вывод об истинности другого
высказывания:
Число делится на 3, если и только если сумма цифр,
составляющих данное число, делится на 3.
Сумма цифр, составляющих данное число, делится на 3.
Данное число делится на 3
Логические
схемы утверждающего модуса ЭКС:
;
;
2) отрицающий, в котором из ложности
одного высказывания делается вывод о
ложности другого:
Магнитное поле вокруг проводника возникает, если и только если по нему течет ток.
Магнитное поле вокруг проводника не возникло.
По
проводнику ток не течёт.
Логические
схемы отрицающего модуса ЭКС:
;
.
Из простых (с двумя посылками) С. образуются
сложные С. В основе их логического
анализа лежит анализ простых С.