
- •Кафедра биомеханики
- •Игровая ситуация
- •Проблемы
- •Решение проблемы
- •2. Основные понятия теории тестов
- •3. Основные понятия теории измерений
- •3.1. Шкалы измерений
- •3.2. Единицы измерений
- •3.3. Точность измерений
- •4. Игровая ситуация и организация игры на I этапе
- •Специальный тест, используемый для контроля за изменением скоростных качеств у спортсменов под влиянием тренировок
- •Тест-критерий для оценки информативности специального теста, используемого для контроля за скоростными качествами у спортсменов
- •5. Порядок работы на I этапе
- •Отчет о работе на I этапе игры (образец)
- •Краткие теоретические сведения
- •II этап деловой игры математические методы статистической обработки результатов измерений в спорте.
- •1. Ситуация и организация игры на II этапе
- •2. Предмет математической статистики
- •3. Составление рядов распределения и их графические представления.
- •4. Меры центральной тенденции
- •5. Выбор меры центральной тенденции.
- •6. Характеристики вариации
- •7. Репрезентативность выборочных показателей
- •8. Ошибки репрезентативности
- •9. Стандартная ошибка среднего арифметического
- •10. Достоверность различий
- •11. Показатель точности оценки параметров
- •12. Порядок работы на II этапе
- •Отчет о работе на I этапе игры (образец)
- •Краткие теоретические сведения
- •Графическое представление
- •III этап деловой игры Оценка надежности теста для контроля за развитием скоростных качеств
- •1. Модель ситуации и организация игры на III этапе
- •2. Основы теории корреляции
- •2.1. Функциональная и статистическая взаимосвязи
- •2.2. Корреляционное поле
- •2.3. Оценка тесноты взаимосвязи
- •2.4. Направленность взаимосвязи
- •2.5. Методы вычисления коэффициентов взаимосвязи
- •3. Основы теории проверки статистических гипотез
- •3.1. Статистические критерии проверки нулевых гипотез
- •3.2. Основной принцип проверки статистических гипотез
- •3.3. Односторонние и двусторонние критические области
- •3.4. Уровень значимости
- •3.5. Параметрические и непараметрические методы статистической проверки гипотез
- •4. Надежность тестов
- •4.1. Понятие о надежности тестов
- •4.2. Стабильность теста
- •4.3. Согласованность теста
- •4.4. Эквивалентность теста.
- •V этап деловой игры
- •V этап деловой игры
2.4. Направленность взаимосвязи
Диаграмма рассеяния на рис. 3.4, кроме сильной статистической взаимосвязи, имеет еще одну особенность – прямо пропорциональную тенденцию зависимости. Это значит, что улучшение, например, результата в толкании ядра весом 3 кг вызывает улучшение (в среднем) результата в толкании ядра весом 5 кг. На рис. 3.5 представлена диаграмма обратно пропорциональной зависимости. В этом случае увеличение одного показателя связано с уменьшением другого (в среднем). Направленность зависимости отражается в знаке коэффициента корреляции. Знак «+» указывает на прямую пропорциональную или положительную взаимосвязь; знак « – » говорит об обратной или отрицательной взаимосвязи (рис. 3.6).
а
б
в
г
д
Рис. 3.6. Примеры статистических взаимосвязей:
а) нелинейная форма зависимости, б) отсутствие статистической зависимости (коэффициент корреляции = 0), в)функциональная зависимость(коэффициент корреляции = +1), г)положительная зависимость (коэффициент корреляции > 0), д)отрицательная зависимость (коэффициент корреляции < 0).
2.5. Методы вычисления коэффициентов взаимосвязи
Величина коэффициента взаимосвязи рассчитывается с учетом шкалы, использованной для измерений.
Для оценки взаимосвязи, когда измерения производят в шкале отношений или интервалов и форма взаимосвязи линейная, используется коэффициент корреляции Бравэ-Пирсона (коэффициенты корреляции для других шкал измерения в данном пособии не рассматриваются). Обозначается он латинской буквой – r. Вычисление значения r чаще всего производят по формуле:
, (3.1)
где
и
– средние арифметические значения
показателейx
и y,
и
– средние квадратические отклонения,n
– число измерений (испытуемых).
В некоторых случаях тесноту взаимосвязи определяют на основании коэффициента детерминации D, который вычисляется по формуле:
. (3.2)
Этот коэффициент определяет часть общей вариации одного показателя, которая объясняется вариацией другого показателя. Так, для вычисленного значения r = –0,677 коэффициент детерминации определится так:
.
Следовательно, только на 45,8 % распределение спортивного результата в тройном прыжке объясняется результатам в беге на 30 м. Остальная часть (100% – 45,8% = 54,2%) вариации объясняется влиянием других неучтенных факторов.
Рис. 3.7. Зависимость между результатами в беге на 30 м с ходу и тройном прыжке с места (n = 10).
3. Основы теории проверки статистических гипотез
В физическом воспитании и спорте часто приходится делать вывод об общих закономерностях проявления какого-либо показателя: нормально или нет распределены результаты измерений этого показателя в генеральной совокупности, отличается ли среднее арифметическое значение результатов измерения в генеральной совокупности до тренировок от аналогичного параметра после тренировок (эффективна или нет методика тренировок), отличается ли дисперсия генеральной совокупности результатов измерения показателя до тренировок от такого же показателя после тренировок (изменилась или нет стабильность результатов спортсмена) и т.д.
Так как указанные выводы делаются на основании относительно небольшого числа результатов измерения показателя (n = 30), необходима проверка достоверности (бесспорности) таких выводов.
Для этого применяются статистические гипотезы.
Статистической гипотезой называется проверяемое математическими методами предположение относительно статистических характеристик результатов измерений. Статистическую гипотезу обозначают символом H.
Обычно выдвигают и проверяют две противоречащие друг другу гипотезы:
нулевую (основную) H0;
конкурирующую (альтернативную) H1.
Примеры статистических гипотез:
1. Нулевая гипотеза H0: закон распределения результатов измерения является нормальным. Конкурирующая гипотеза H1: закон распределения результатов измерения отличен от нормального.
2. Нулевая гипотеза H0: среднее арифметическое значение генеральной совокупности результатов измерения показателя после цикла тренировок не изменилось. Конкурирующая гипотеза H1: среднее арифметическое значение увеличилось.