
Higher_Mathematics_Part_3
.pdf
Examples of orthogonal functions:
1) system of functions
1, sin x, cos x, sin 2x, cos 2x, sin 3x, cos 3x, …, sin nx, cos nx, …
is orthogonal on a segment [−π; π] ; 2) systems of functions
1, cos x, cos 2x, cos 3x, …, cos nx, …
and
sin x, sin 2x, sin 3x, …, sin nx, …
are orthogonal on a segment [0; π] ; 3) system of functions
1, sin πlx , cos πlx , sin 2πl x , cos 2πl x , …, sin nπl x , cos nπl x , …
is orthogonal on a segment [−l; l] ; 4) systems of functions
1, cos πlx , cos 2πlx , …, cos nπlx , …
and
sin πlx , sin 2πl x , …, sin nπl x , …
are orthogonal on a segment [0; l] .
Let’s calculate the coefficients of trigonometric series (3.2). We integrate both sides of equality (3.2) from −π to π to calculate a0 .
π
∫
-π
Therefore,
Then
π |
a0 |
∞ |
π |
π |
|
|
f (x)dx = ∫ |
|
dx + ∑ an ∫ cos nxdx + bn ∫ sin nxdx . |
||||
2 |
||||||
-π |
n=1 |
-π |
-π |
|
||
π |
|
|
π |
|
|
|
∫ |
cos nxdx = 0; |
∫ sin nxdx = 0. |
|
|||
− π |
|
|
− π |
|
|
π
∫f (x)dx = π a0 .
− π
|
|
1 |
π |
|
|
a0 |
= |
∫ f (x)dx . |
(3.8) |
||
|
|||||
|
|
π − π |
|
To compute ak we multiply both sides of equality (3.2) by cos kx and integrate both sides from −π to π. To compute bk we multiply both sides of equality (3.2) by sin kx and integrate both sides from −π to π.
71
http://vk.com/studentu_tk, http://studentu.tk/
We receive
|
|
1 |
π |
|
|
|
ak |
= |
∫ |
f (x)cos kxdx, |
(3.9) |
||
π |
||||||
|
|
− π |
|
|
||
|
|
1 |
π |
|
|
|
bk |
= |
|
∫ |
f (x)sin kxdx. |
(3.10) |
|
|
||||||
|
|
π − π |
|
|
||
Definition. The coefficients |
a0 , |
an , bn obtained by formulas (3.8), (3.9) and |
(3.10) are called Fourier coefficients. Trigonometric series with these coefficients is called Fourier series.
|
For integrable function f (x) |
on a segment [−π; π] we write: |
|
|||||||||
|
|
|
|
a0 |
|
∞ |
|
|
|
|
||
|
|
f (x) ~ |
|
+ ∑(an cos nx + bn sin nx). |
(3.11) |
|||||||
|
|
|
|
|||||||||
|
|
2 |
|
n=1 |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
||
|
The sign |
(~) denotes that Fourier series corresponds the function f (x) |
||||||||||
integrable on a segment [−π; π] . |
|
|
|
|
|
|
||||||
|
Let’s consider sufficient conditions for representation of a function |
f (x) by |
||||||||||
Fourier series. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
Theorem |
(Dirichlet’s). Suppose Dirichlet’s conditions are fulfilled for |
||||||||||
|
1) f (x) |
2π-periodic function f (x) on segment [−π; π] : |
|
|||||||||
|
is a piecewise continuous (continuous or has finite number of |
|||||||||||
|
finite discontinuities), |
|
|
|
|
|
|
|||||
|
2) f (x) |
is a piecewise monotone. |
|
|
|
|
||||||
|
Then Fourier series of a function f (x) is convergent everywhere and its |
|||||||||||
|
sum S(x) has the following properties: |
|
|
|
|
|||||||
|
1) S(x) = f (x) at points of continuity f (x) , that is |
|
||||||||||
|
|
|
a0 |
|
|
∞ |
|
|
|
|
||
|
|
f (x) = |
+ ∑ (an cos nx + bn sin nx) ; |
|
||||||||
|
|
|
|
|||||||||
|
2) if x0 |
2 |
|
|
n=1 |
|
|
|
f (x) , |
|||
|
is a point of discontinuity of the first type of a function |
|||||||||||
|
then |
|
|
|
|
|
f (x0 − 0) + f (x0 |
+ 0) |
|
|
|
|
|
|
S(x0 ) = |
, |
|
|
|||||||
|
|
2 |
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
||
|
3) at the end points x = −π, |
x = π of a segment [−π; π] |
|
|||||||||
|
|
S(−π) = S(π) = |
f (−π + 0) + f (π − 0) |
. |
|
|||||||
|
|
|
|
|||||||||
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
http://vk.com/studentu_tk, http://studentu.tk/

Remarks.
1. For any integrable 2π-periodic function ϕ(x) the following equality is true
|
|
|
π |
|
|
|
|
a+ 2π |
|
|
|
|
|
|
∫ |
ϕ(x)dx = |
∫ |
|
ϕ(x)dx . |
||||
|
|
|
− π |
|
|
|
|
a |
|
|
|
Therefore we can calculate Fourier coefficients by the formulas |
|||||||||||
a = |
1 |
a+ 2π |
f |
(x)dx, a |
|
= |
1 |
a+ 2π f (x) cos nxdx , |
|||
π |
|
π |
|||||||||
0 |
∫ |
|
|
|
|
n |
|
∫ |
|||
|
|
|
|
|
|
|
|
|
|
||
|
|
a |
|
|
|
|
|
|
|
|
a |
|
|
b |
= |
1 |
a+ 2π |
f (x)sin nxdx, |
|||||
|
|
π |
|||||||||
|
|
|
n |
|
∫ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
|
|
|
where a is an arbitrary real number.
2. If Sn (x) is the n-th partial sum of Fourier series of a function f (x) then
f (x) ≈ Sn (x) = a0 + ∑n (ak cos kx + bk sin kx). 2 k =1
3. Whereas an cos nx + bn sin nx = An sin(nx + ϕn ) then Fourier series of a
function |
f (x) is |
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f (x) = A0 + ∑(An sin(nx + ϕn )). |
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
Numbers |
ωn = 0, 1, 2, ... |
form |
a discrete |
spectrum of a function |
f (x) ; |
|||||||||||||
numbers |
A |
0 |
= |
a0 |
, A |
= a2 |
+ b2 |
( n = 1, |
2, |
3, ... ) form amplitude spectrum, |
||||||||
|
|
|||||||||||||||||
|
|
2 |
|
|
n |
n |
n |
|
|
|
|
|
|
|
||||
|
|
|
|
an |
|
|
|
|
|
|
|
|
|
|
||||
numbers ϕn = arctg |
|
( n = 1, |
2, 3, .... ) form phase spectrum of a function |
f (x). |
||||||||||||||
bn |
||||||||||||||||||
4. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sin nπ = 0, |
cos nπ = |
( |
) |
n , |
n = 0, 1, 2, ... . |
|
|
|||||
|
|
|
|
|
|
|
−1 |
|
|
3.2. Fourier Series for Odd and Even Functions
If f (x) is either odd or even function we can simplify the calculation of Fourier coefficients. Fourier series for these functions are given in Table 3.1.
73
http://vk.com/studentu_tk, http://studentu.tk/

|
|
|
|
|
|
|
|
|
|
|
Table 3.1 |
|
|
|
|
|
|
|
|
|
|||
Property of a function f (x) |
f (x) |
is an even function |
f (x) |
is an odd function |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a0 |
|
∞ |
|
|
|
∞ |
|
||
Fourier series |
|
+ ∑an cos nx |
|
∑bn sin nx |
|||||||
2 |
|
|
|||||||||
|
|
|
n=1 |
|
|
|
n=1 |
|
|||
|
|
|
|
|
|||||||
|
b = 0, a = |
2 |
π f (x)dx , |
a = 0, a = 0, |
|||||||
|
|
||||||||||
|
n |
|
0 |
π ∫ |
|
0 |
|
n |
|||
|
|
|
|
|
|
||||||
Fourier coefficients |
|
|
|
|
π |
0 |
|
2 π |
|
||
|
|
|
|
|
|
|
|
||||
|
an = |
2 |
∫ f (x)cos nxdx |
bn = |
|
∫0 |
f (x)sin nxdx |
||||
|
π |
||||||||||
|
π |
|
|
||||||||
|
|
|
|
|
0 |
|
|
|
|
|
|
3.3. Fourier Series for 2l-periodic Functions
It is possible to expand in Fourier series 2l-periodic functions (2l ≠ 2π). Suppose a function f (x) is defined on a segment [−l; l] and has a period
2l ( l is an arbitrary positive real number). Suppose this function obeys all
conditions of Dirichlet’s theorem. Therefore Fourier series for |
f (x) looks like |
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
a0 |
|
|
|
∞ |
|
|
|
|
|
|
|
πnx |
|
|
|
πnx |
|
|
|||||
|
|
|
f (x) = |
|
+ |
∑ |
an |
cos |
|
l |
|
+ bn sin |
|
l |
, |
|
(3.12) |
|||||||||||||||
|
|
|
2 |
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
where Fourier coefficients are obtained by using the following formulas |
|
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
1 l |
|
|
|
|
|
|
|
|
1 l |
|
|
|
|
|
|
|
πnx |
|
|
|
|
|
||||||
|
a = |
|
l |
∫ |
f (x)dx, |
|
a = |
|
l ∫ |
|
f (x)cos |
l |
|
dx, |
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
0 |
|
|
|
|
−l |
|
|
|
|
|
|
|
n |
|
|
−l |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(3.13) |
|||
|
|
|
|
|
|
|
|
|
|
1 l |
|
|
|
|
|
|
πnx |
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
b |
= |
|
l ∫ |
f (x) sin |
|
|
|
l |
|
dx. |
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
n |
|
|
|
−l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
We can obtain formulas (3.12), (3.13) for function |
|
ϕ(t) using |
formulas |
|||||||||||||||||||||||||||||
(3.2), (3.8) — (3.10) and the connection between ϕ(t) and |
|
f (x) . |
|
|||||||||||||||||||||||||||||
|
x = |
|
lt |
|
|
|
|
|
|
|
|
|
|
|
lt |
, t [−π; |
|
|
|
|
|
|
||||||||||
|
|
|
|
|
, ϕ(t) = f (x) = |
f |
|
|
π]. |
|
|
|
|
|||||||||||||||||||
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
Remark. All theorems for Fourier series of 2π-periodic functions take place for Fourier series of 2l-periodic functions.
74
http://vk.com/studentu_tk, http://studentu.tk/

Fourier series and Fourier coefficients for even and odd functions defined on segment [−l; l] are given in Table 3.2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3.2 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Property of a |
|
|
|
|
f (x) |
|
is an even function |
|
f (x) |
is an odd function |
||||||||||||
function f (x) |
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a0 |
|
|
∞ |
|
|
πnx |
|
|
|
|
∞ |
|
|
|
|
|
Fourier series |
|
|
|
|
|
|
+ ∑an cos |
|
|
|
∑bn sin πnx |
|
|
|||||||||
|
|
|
|
2 |
l |
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
n 1 |
|
|
|
|
|
|
n 1 |
l |
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
b = 0, a = |
2 |
l |
f (x)dx, |
|
|
a = 0, a = 0, |
|
|
|||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||
Fourier |
|
|
n |
|
|
|
|
|
0 |
l ∫0 |
|
|
|
0 |
n |
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
l |
|
πnx |
|
|||||
coefficients |
|
|
|
|
|
|
|
|
|
|
|
|
|
bn |
|
∫ |
f (x)sin |
dx |
||||
|
|
|
|
|
2 |
l |
f (x) cos πnx dx |
= |
|
l |
|
|||||||||||
|
|
a |
n |
= |
l |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
l |
|
∫ |
|
|
|
l |
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.4. Fourier Series for Functions Defined on a Segment [0; l] |
|
|
||||||||||||||||||||
|
|
|
|
|
or on an Arbitrary Segment [a; b] |
|
|
|
|
|
||||||||||||
Suppose a function |
|
f (x) is defined on a segment |
[0; l] . Let’s extend this |
|||||||||||||||||||
function on an interval |
(−l; 0) |
in arbitrary way and extend this function perio- |
||||||||||||||||||||
dically with period |
2l . We can expand this function in Fourier series using |
|||||||||||||||||||||
formulas (3.12), (3.13). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
The most popular cases are: |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
1. We extend a function |
|
f (x) from a segment [0; l] |
|
on interval |
(−l; 0) in |
|||||||||||||||||
even way that is |
f (− x) = f (x) for |
x (−l; 0) (Fig. 3.1, а). Then we can consi- |
||||||||||||||||||||
der a function f (x) |
as an even function on interval (−l; l) . Therefore Fourier |
|||||||||||||||||||||
series for this function contains only cosines. |
|
|
|
|
|
|
|
|
|
|||||||||||||
2. We extend a function |
|
f (x) |
from a segment [0; l] |
|
on interval (−l; 0) in |
|||||||||||||||||
odd way that is |
f (− x) = − f (x) |
for |
x (−l; 0) (Fig. |
3.1, b). Then |
we can |
consider a function |
f (x) |
as an odd function on interval (−l; l) . Therefore Fourier |
||||
series for this function contains only sines. |
|
|
|
|||
|
y у = f (x) |
|
y у = f (x) |
|
||
– l |
O |
l |
x |
– l O |
l |
x |
|
a |
|
|
|
b |
|
|
|
|
Fig. 3.1 |
|
|
|
|
|
|
|
|
|
75 |
http://vk.com/studentu_tk, http://studentu.tk/
Suppose a piecewise monotone function f (x) is given on a segment [a; b],
where a < b. |
Let’s consider a periodic extension of this function for all real axis |
||||||||||||||||||||||||||
with period T = b − a . That is we get a function f1 (x) |
so that f1 (x) = f (x) for |
||||||||||||||||||||||||||
x (a; b) and f1 (x + T ) = f1 |
(x) . We denote 2l = T = b − a. Therefore l = |
b − a |
. |
||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
The following equality is fulfilled for the function f1(x) : |
|
2 |
|
||||||||||||||||||||||||
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
l |
|
|
|
|
|
a+ 2l |
|
|
|
|
|
|
b |
|
|
|
|
|
|
|
|
||
|
|
|
∫ f1 (x)dx = ∫ f1 (x)dx = ∫ f (x)dx . |
|
|
|
|
||||||||||||||||||||
Then |
|
|
−l |
|
|
|
|
|
|
a |
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
a0 |
|
∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
πnx |
|
|
|
πnx |
|
|||||||||||
|
|
f1 (x) ~ |
|
|
|
|
+ ∑ |
an cos |
|
|
l |
|
+ bn sin |
l |
|
, |
|||||||||||
|
2 |
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
||||||||
where Fourier coefficients are obtained by formulas |
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
1 b |
|
|
|
|
|
|
|
|
1 b |
|
|
|
|
πnx |
|
|
|
|
|||||
|
|
a = |
|
l |
∫ |
f |
(x)dx, |
|
a |
= |
|
l ∫ |
f (x) cos |
|
l |
|
dx, |
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
0 |
|
|
|
a |
|
|
|
|
|
|
n |
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(3.14) |
||||
|
|
|
|
|
|
|
1 b |
|
|
|
πnx |
|
|
|
|
|
b |
− a |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
b |
|
|
= |
|
|
∫ |
|
f (x) sin |
|
|
dx |
|
( l = |
|
|
|
). |
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
n |
|
l |
|
|
|
l |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f1 (x) = f (x) |
for x (a; b) |
therefore the sum of Fourier series is equal to f (x) |
|||||||||||||||||||||||||
at all points of continuity of segment [a; b] . |
|
|
|
|
|
|
|
|
|
|
3.5. Complex Form of Fourier Series
Sometimes we use Fourier series in a complex form. We apply Euler’s formulas
cos nx = |
einx + e−inx |
, sin nx = |
einx − e−inx |
. |
|
2 |
2i |
||||
|
|
|
Then we can write Fourier series for 2π-periodic function f (x) as
|
|
n=∞ |
|
|
|
|
f (x) = ∑ cn einx . |
|
(3.15) |
|
|
n=−∞ |
|
|
Coefficients of this series are |
|
|||
|
|
|
||
|
π |
|
||
|
cn = ∫ f (x)e−inx dx ( n = 0, ± 1, ± 2, ... ). |
(3.16) |
||
|
−π |
|
76
http://vk.com/studentu_tk, http://studentu.tk/

Definition. An equality (3.15) is called a complex form of Fourier series of a function f (x) and numbers cn (3.16) are called the complex Fourier coefficients.
Micromodule 3
EXAMPLES OF PROBLEMS SOLUTION
Example 1. Expand 2π-periodic function
−1, if |
x [0; π], |
|
f (x) = |
2, if |
x (−π;0), |
|
( f (x + 2π) = f (x) ( Fig. 3.2)) into Fourier series.
|
у |
|
|
|
2 |
|
|
–π |
О |
π |
х |
|
–1 |
|
|
Fig. 3.2
Solution. The given function is satisfied to all conditions of Dirichlet’s theorem. We can expand it in Fourier series. Let’s calculate coefficients a0 , an ,
bn using formulas (3.8) — (3.10). We get
|
|
|
|
|
|
1 |
|
π |
|
|
|
|
|
|
|
|
1 |
0 |
|
|
|
|
|
|
|
|
|
|
π |
|
|
1 |
|
|
|
|
0 |
|
|
|
|
π |
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
a0 |
= |
|
|
|
∫ |
|
f (x)dx = |
|
|
|
|
∫ |
(−1)dx + |
∫ |
|
|
|
|
|
− x |
|
+ 2x |
|
|
|
= 1; |
|
|
|
|
|||||||||||||||||||||||||
|
|
|
π −π |
|
|
|
|
|
|
|
2dx = |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
π − π |
|
|
|
|
|
|
|
|
0 |
|
|
π |
|
|
|
|
−π |
|
0 |
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
1 |
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
0 |
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
an |
|
= |
|
|
|
∫ |
f (x) cos nxdx = |
|
|
|
|
∫ |
|
− cos nxdx + |
∫ |
|
|
|
|
|
|
|
|
= |
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
2 cos nxdx |
|
|
|
|
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
− π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π −π |
|
|
|
π |
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
sin nx |
|
0 |
|
|
|
|
2 sin nx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
= 0; |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
n |
|
|
|
−π |
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
1 cosnx |
|
|
|
|
|
|
|
|
π |
|
||||||||||||||||||
|
1 |
|
π |
|
|
|
|
|
|
|
|
|
|
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
0 |
|
|
2cosnx |
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
bn = |
|
|
∫ |
f (x)sin nxdx = |
|
|
|
∫ |
−sin nxdx + |
∫ |
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
= |
||||||||||||||||||||||||||
π |
|
|
|
|
|
|
|
2sin nxdx |
|
|
|
|
|
n |
|
|
|
|
n |
|
|
|
||||||||||||||||||||||||||||||||||||
|
−π |
|
|
|
|
|
|
|
|
|
|
π −π |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
π |
|
|
|
−π |
|
|
|
|
|
0 |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
= |
1 |
|
(cos 0 − cos(−πn) − |
2cos πn + 2 cos 0) = |
3(1− (−1)n ) |
. |
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
πn |
|
|
πn |
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
If we substitute values of coefficients a0 , an , |
bn |
|
in formula (3.2) we get |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
∞ 3(1− (−1)n ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f (x) = |
|
|
|
|
+ ∑ |
|
|
|
|
|
|
sin nx. |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
πn |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
http://vk.com/studentu_tk, http://studentu.tk/

As
bn
|
0, |
|
if |
n = 2k, |
|
|
6 |
|
|
|
|
= |
, |
if |
n = 2k − 1, |
||
|
|
||||
π(2k − 1) |
|||||
|
|
|
|
then expansion in Fourier series is
|
1 |
|
6 |
∞ |
sin(2k −1)x |
|
f (x) = |
+ |
∑ |
. |
|||
|
2 |
|
π k =1 |
2k −1 |
This equality is fulfilled for all points of continuity of the given function, that is for x ≠ πn . At points of discontinuity x = πn the sum of the series equals
arithmetic mean of one-sided limits at these points. Therefore S(πn) = −1+ 2 = 1 . 2 2
Remark. If f (x) = g(x) + C, is an odd function, C is a constant, then Fourier series for f (x) looks like
|
|
|
a0 |
∞ |
|
|
f (x) = |
+ ∑bn sin nx. |
|
|
|
|
||
|
|
2 |
n=1 |
|
Example 2. Expand 2π-periodic function |
||||
0, if |
x (−π; 0), |
( f (x + 2π) = f (x) (Fig. 3.3)) in Fourier series. |
||
f (x) = |
x [0; π], |
|||
x, if |
|
|
|
Solution. The given function is piecewise monotone. Therefore it may be expanded in Fourier series. Let’s find Fourier coefficients for function f (x) :
|
|
|
|
|
|
|
|
|
|
1 |
0 |
|
|
|
|
|
π |
|
|
|
|
|
|
1 x2 |
|
|
|
π |
|
π |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
a0 = |
|
|
|
|
∫ |
0 dx |
+ |
∫ |
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
= |
|
; |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
xdx |
π 2 |
|
|
|
|
|
2 |
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
π −π |
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
||||||||||||
|
|
|
1 |
0 |
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
1 |
π |
|
|
|
|
|
|||||||||
an |
= |
|
|
|
|
∫ |
0 |
cos nxdx + |
∫ |
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
∫ |
x cos nxdx = |
|
|||||||||||||
π |
|
|
|
|
|
|
x cos nxdx |
|
π |
|
|
||||||||||||||||||||||||||||
|
|
|
|
−π |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|||||||||
|
u = x, |
dv = cos nxdx |
|
|
|
|
1 |
|
|
sin nx |
|
|
π |
|
π sin nx |
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
= |
|
|
|
|
|
|
|
|
|
|
sin nx |
|
= |
|
|
x |
|
|
|
|
|
|
|
|
|
|
− |
∫ |
|
|
dx |
= |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
du = dx, |
v = |
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
n |
|
|
|
|
|
|
|
|
n |
|
|
|||||||||||
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
0 |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
(−1)n − 1 |
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
cos nx |
|
= |
; |
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
πn2 |
|
|
|
0 |
|
|
πn2 |
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
1 |
0 |
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
1 |
|
π |
|
|
|
|
|
|||||||
|
bn |
= |
|
|
|
|
∫ |
0 |
sin nxdx + |
∫ |
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
∫ |
x sin nxdx = |
|
||||||||||||
|
|
|
|
|
|
|
|
|
x sin nxdx |
|
π |
|
|
||||||||||||||||||||||||||
|
|
|
|
π −π |
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
78
http://vk.com/studentu_tk, http://studentu.tk/
|
|
|
u = x, dv = sin nxdx |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
cos nx |
|
π |
|
π cos nx |
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cos nx |
|
|
|
|
= |
|
|
|
|
|
− x |
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
dx |
= |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∫ n |
|
|
|
||||||||||||||||||||||||||||
|
|
du = dx, v = − |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
0 |
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(−1)n+1 π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(−1)n+1 |
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
sin nx |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
πn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
Therefore Fourier series for the given function looks like |
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
∞ |
|
|
(−1)n −1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
(−1)n+1 |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
f (x) |
|
|
|
+ ∑ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cos nx + |
|
|
|
|
|
|
|
sin nx |
|
, |
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
4 |
|
|
|
|
|
|
πn |
2 |
|
|
|
|
|
|
|
|
|
n |
|
|
|
|||||||||||||||||||||||||||||||||||||||
or |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
cos x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
f (x) |
π |
|
2 |
|
|
|
cos3x |
|
|
|
|
cos5x |
|
|
|
|
|
|
|
+ |
sin x |
|
sin 2x |
|
|
|
sin 3x |
|
||||||||||||||||||||||||||||||||||||||
|
− |
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
+ … |
|
|
|
|
|
|
|
− |
|
|
|
|
+ |
|
|
|
− … . |
||||||||||||||||
4 |
|
π |
2 |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
5 |
2 |
|
|
|
|
|
1 |
|
3 |
5 |
|
||||||||||||||||||||||||||||||||||||||
|
|
|
|
1 |
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
At all points of continuity of |
|
|
|
f (x) |
the sum of the series equals the value of |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
function |
f (x) . At points of discontinuity |
|
|
x = −π + 2πk, k Z |
|
|
the sum of the |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
series equals |
π . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
x = 0 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f (x), therefore |
|
|
|
|
|
|
|||||||||||||||||
is a point of continuity of function |
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
f (0) = |
π |
− |
2 |
|
1 |
+ |
|
1 |
|
|
+ |
|
1 |
|
+ |
|
|
, |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
… |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
4 |
|
π |
|
|
2 |
|
|
2 |
|
|
|
5 |
2 |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
But f (0) = 0, |
then |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
2 1 |
|
|
|
1 |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
0 = |
|
− |
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
+ |
|
|
|
+ … |
, |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
2 |
|
|
|
|
2 |
|
5 |
2 |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
Therefore |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π 1 |
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
+ |
1 |
|
|
+ |
|
|
|
1 |
|
|
|
+ …+ |
1 |
|
|
+ …= |
π2 |
. |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
12 |
|
32 |
|
|
|
52 |
|
|
n2 |
8 |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Conclusion. We can find the sum of numerical series using Fourier series. Example 3. Expand 2π -periodic function
f (x) = | x |, ( f (x + 2π) = f (x) (Fig. 3.4)) into Fourier series.
Solution. The given function is satisfied to all conditions of Dirichlet’s theorem. It is even function. Then Fourier series for this function looks like
|
a0 |
∞ |
|
f (x) = |
+ ∑ an cos nx . |
||
|
|||
2 |
n=1 |
79
http://vk.com/studentu_tk, http://studentu.tk/

Let’s find Fourier coefficients a0 and an (Table 3.1):
|
|
|
|
|
a |
= |
2 π |
xdx = |
|
2 x2 |
|
|
π |
= π; |
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
π ∫ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
0 |
|
|
|
|
|
|
π 2 |
|
0 |
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
2 |
π |
|
|
|
|
|
|
|
|
|
2 |
sin nx |
|
|
π |
|
π sin nx |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
an |
= |
|
∫ |
x cos nxdx = |
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
∫ |
|
|
|
= |
||||||||
π |
|
|
|
x |
|
|
n |
|
|
|
|
|
|
|
n |
dx |
|||||||||||||||
|
|
0 |
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
0 |
|
0 |
|
|
|
||||||||
|
|
|
|
= |
|
2 cos nx |
|
π |
= |
|
2 |
|
|
|
((−1)n − 1). |
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
π |
|
n2 |
|
|
0 |
πn2 |
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
у |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
у |
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
–2π –π О |
π 2π х |
–2π –π О |
π |
2π х |
Fig. 3.3 Fig. 3.4
That is Fourier series for the given function is
f (x) = π + |
2 |
|
∞ |
|
(−1) |
n |
− 1 |
|
|
|
|
π − |
4 |
∞ |
cos(2k −1)x |
|
|
|||||||
|
∑ |
|
cos nx = |
∑ |
= |
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
2 |
π n=1 |
n2 |
|
|
|
|
|
|
2 |
|
π k =1 |
(2k −1)2 |
|
|||||||||||
|
π |
|
4 cos x |
|
|
cos 3x |
|
|
cos 5x |
|
|
|
||||||||||||
= |
|
|
− |
|
|
|
|
|
|
|
+ |
|
|
+ |
|
|
|
|
+ … . |
(3.17) |
||||
2 |
|
|
|
|
2 |
|
2 |
|
|
5 |
2 |
|
||||||||||||
|
|
π |
1 |
|
|
|
3 |
|
|
|
|
|
|
|
|
|
||||||||
The given function f (x) |
is continuous everywhere. Therefore formula (3.17) is |
|||||||||||||||||||||||
true for all x R . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Example 4. Expand function |
|
f (x) = x2 , |
x [0; π] |
in sine series. |
|
|||||||||||||||||||
Solution. Let’s extend |
|
f (x) |
in odd way on |
|
[−π; 0) , and then extend it |
|||||||||||||||||||
periodically with period |
2π on all numerical axis (Fig. 3.5). Function |
f (x) is |
||||||||||||||||||||||
odd on a segment [−π; π] . Therefore |
a0 = an |
= 0 . Let’s find a coefficient bn |
2 π using formula bn = π ∫0
We get
b = 2 π x2
n π ∫0
f (x)sin nxdx .
|
2 |
|
2 |
|
− cos nx |
sin nxdx = |
|
x |
|
n |
|
|
|
||||
|
π |
|
|
||
|
|
|
|
|
|
π |
2 |
π |
|
|
|
+ |
∫0 |
x cos nxdx |
= |
||
n |
|||||
0 |
|
|
|||
|
|
|
|
|
80
http://vk.com/studentu_tk, http://studentu.tk/