Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Higher_Mathematics_Part_3

.pdf
Скачиваний:
304
Добавлен:
19.02.2016
Размер:
9.11 Mб
Скачать

Example 5. Calculate the circulation of the vector field F = xzi + yx j + zyk along the line of intersection of the plane x + y + z = 3 with coordinate planes by direct calculation and by Stokes’ formula.

Solution. The first method (direct calculation).

C = xzdx + xydy + zydz = I1 + I2 + I3

L

where, I1 , I2 , I3 are integrals along line segments AB, BC and CA accordingly. Let us evaluate the integral I1 .

On moving along the segment AB from the point A to the point B the variable x changes from 3 to 0, y = 3 x and

z = 0 (Fig. 9.11). Then

0

I1 = xzdx + yxdy + zydz =(3 x)xd(3 x) =

AB

 

 

 

 

3

 

 

 

 

 

 

3

3

2

 

x3

 

 

3

 

 

 

 

 

=

 

 

x

 

 

 

 

= 4, 5.

 

(3 x)xdx =

2

3

 

 

 

 

0

 

 

 

 

 

0

 

z

C

B O y

A

x

Fig. 9.11

Symmetry of the problem relative to the variables x, y and z implies that I2 = I3 = I1 = 4,5, therefore C = 3 4, 5 = 13, 5.

The second method. We can calculate the circulation of the vector field by Stokes’ formula. To this end we consider the upside of the plane σ (triangle ABC) and a positive direction ABCA corresponding to this side. We have

P = xz, Q = yx, R = zy,

P

= 0,

Q

= y,

R

= z,

Q

= 0,

P

= x,

R

= 0.

 

y

 

x

 

y

 

z

 

z

 

x

 

Putting these values in Stokes’ formula (9.14) and using the formula (9.12), we obtain

C = xzdx + xydy + zydz = ∫∫ ydxdy + zdydz + xdzdx

L

σ

Let us express the last surface integral by double integrals over domains which are projections of the triangle ABC onto the coordinate planes:

C = ∫∫

ydxdy + ∫∫

zdydz + ∫∫ xdzdx,

ABO

BCO

AOC

where ABO, BCO, AOC are projections of the triangle ordinate planes Oxy, Oxz, Oyz. We have

 

3

3y

3

3y

3

 

 

3

 

 

 

∫∫

ydxdy = ydy

dx = yx

 

dy = (3y y

2

 

2

 

 

 

)dy =

 

y

 

 

 

2

 

ABO

0

0

0

0

0

 

 

 

 

 

ABC onto co-

y3

 

3

 

 

= 4,5.

3

 

0

221

http://vk.com/studentu_tk, http://studentu.tk/

By analogy ∫∫ zdydz =

∫∫ xdzdx = 4,5. Thus, C = 3 4,5 = 13,5.

BCO

AOC

Example 6. Calculate a circulation of the vector F = yi + x j + k along a circle x2 + y2 = 1, z = 0 in the positive direction.

Solution. The first method (direct calculation). We can write down the equation of the given circle L in a parametric form:

x = cos t, y = sin t, z = 0, 0 t 2π.

So as

P = − y = − sin t,

Q = x = cos t, R = 1,

dx = − sin tdt,

dy = cos tdt, dz = 0,

By definition of circulation (see a formula (9.12)) we obtain

C = (y)dx + xdy + dz =

2π ((sin t )(sin t ) + cos t cost )dt =

L

0

2π

2π

= (sin2 t + cos2 t)dt = dt = 2π.

0

0

The second method (by Stokes’ formula). By formulas (9.12) and (9.14) we have (D : x2 + y2 1) :

 

 

 

 

 

 

 

2π

1

 

 

C = ∫∫(1(1))dxdy = 2∫∫ dxdy = 2 dϕρdρ = 2π.

 

D

 

D

0

0

 

 

Example 7. Prove that the vector field

 

 

 

 

 

F = (3x2 y2 + 2xz3 )i + (2 yx3 z2 ) j + (3x2 z2 2yz + 4z3 )k

is potential, and find its potential.

 

 

 

 

 

 

 

 

Solution. To prove that the field is potential it

is enough to prove that

rot F = 0. We have

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

j

 

 

k

 

 

 

 

 

 

 

rot F =

 

 

 

 

 

 

 

=

 

x

 

y

 

 

z

 

 

 

 

 

 

 

3x2 y2 + 2xz3

2 yx3 z2

3x2 z2 2yz + 4z3

 

= (2z (2z)) i (6xz2 6xz2 ) j + (6yx2 6yx2 )k = 0 .

Therefore, the field of vector F is potential.

 

 

 

 

 

222

 

 

 

 

 

 

 

 

 

 

 

http://vk.com/studentu_tk, http://studentu.tk/

We can define a potential u(x,

y, z) by the formula (9.16), taking the origin

of coordinates as the fixed point so that x0 = 0, y0 = 0, z0 = 0.

 

 

 

 

( x, y, z)

 

x

 

 

 

 

 

u(x, y, z) =

Pdx + Qdy + Rdz =0 dx +

 

 

 

 

(0,0,0)

 

0

 

 

 

 

 

y

z

 

 

 

 

 

 

 

 

 

+2yx3dy +(3x2 z2 2yz + 4z3 )dz = y2 x3 +x2 z3 yz2 + z4 + C.

 

0

0

 

 

 

 

 

 

 

 

 

 

Micromodule 9

 

 

 

 

 

 

 

CLASS AND HOME ASSIGNMENTS

 

 

1. Find the surfaces of level of the scalar field u =

 

z

.

 

x2 + y2

 

 

 

 

 

 

 

 

 

 

2. Calculate a derivative of the scalar field u = x2 y + 2 y2 z z2 x + 1 at the

point

M0 (0; 2; 1) in the direction of the point M1 (2; 4; 0) .

 

 

3. Calculate a derivative of

the scalar field

u = z

x2 + y2

at the point

M (3; 4; 1)

in direction of the vector forming the angles

α = 45°

and β = 60°

with the coordinate axes Ox and Оу respectively.

 

 

 

 

 

4. Calculate a derivative of the scalar field u =

 

x2 + y2 + z2

at the point

M (6; 2; 3)

in direction of its gradient calculated at this point.

 

 

5. Calculate a derivative of

the field u = ln (x2 + y2 z)

at the point

M (1;

3; 3)

of the circle x = 2 cos t, y = 2 sin t, z = 3 in the positive direction

of this circle.

 

 

 

 

 

 

 

 

6. Find the gradient of the scalar field u = 2x3 y 3yz2 + zx 2y + 3 at the

point M (1; 0; 2).

 

 

 

 

 

 

 

 

7. The scalar field u = arctg

y

 

is given. Find an angle between its gradients

x

 

 

 

 

 

 

 

 

 

calculated at the points M1 (1; 0)

and M2 (1; 1) .

 

 

 

 

 

8. Find points where a gradient of the scalar field u = ln(x y1) is equal to i + j.

9.Find vector lines of the field F = (z y)i + (x z) j + ( y z)k.

10.Find a vector line of the field F = i y2 j + z2 k , passing through the point M (1; 2; 3).

223

http://vk.com/studentu_tk, http://studentu.tk/

11. Calculate the flux of the vector field F = (x + 3y)i + ( y z) j + (z + x)k

across the upper part of circle, that is cut out by a cone x2 + y2 = z2 from the plane z = 1 .

12. Calculate the flux of the vector field F = xi + zk through the lateral surface of the circular cylinder x2 + y2 = 4 bounded by the planes z = 0 and z = 1 .

13. Calculate the flux of the vector field F = (x + y)i + yzj + (x z)k

through the closed surface bounded by the paraboloid z = 1x2 y2 and the plane z = 0.

14.

Calculate the flux of the vector field

F = x2 i + y2 j + z2 k through the

closed surface bounded by the hemisphere z =

1x2 y2 and the plane z = 0.

15.

Calculate the flux of the vector field F = (3x 2)i 5yj + (2z + 1)k

through

the outer side of the cone

x2 + y2

= z2

( 0 z 3 ), using Gauss–

Ostrogradsky formula after completing the given surface to the closed one.

Calculate the circulation of the vector field

F along a closed contour L.

16.

F = zi xj + yk , L is a circle

z = x2 + y2 10, z = −1 .

17.

F = xyi + yzj + xzk , L is an ellipse x2 + y2

= 1, x + y + z = 1.

18. F = y2 i + z2 j + x2 k , L is a closed contour ABCA, formed by intersection of the plane x + y + z = 3 with coordinate planes.

Calculate the circulation of the vector field F along a closed contour L using: a) direct integration; b) Stokes’ formula.

19.F = x2 y3i + j + zk , L is a circle x2 + y2 = R2 , z = 0 .

20.F = zi yk , L is an ellipse x2 + y2 = 4, x + 2z = 5 .

21. F = x2 i + y2 j + z2 k , L is a circle x2 + y2 + z2 = 10, z = 1 .

22. Find the divergence and rotation of the vector field of a radious vector r = xi + yj + k .

Find the rotation of the vector field F at the point M (1; 2; 0).

23.F = (x2 + y2 )i + ( y2 + z2 ) j + (z2 + x2 )k .

24.F = (2x2 y z)i + (3xz2 + 1) j + (x2 + y2 + z2 )k .

25.Prove that the vector field

F = (4x3 z + y2 3)i + (2xy + z2 + 1) j + (x4 + 2yz)k

is potential, and find its potential.

224

http://vk.com/studentu_tk, http://studentu.tk/

Answers

1. z = C x2 + y2 are cones whose vertex is the origin of coordinates; Oz is a symmetry axis.

2. 2. 3.

(29 + 3

2) /10 ; (3 2 21) /10 . 4. 1. 5. 4

 

3. 6.

grad u = −2i

12 j + k.

7.

3π

.

8. (2; 1),

 

4

 

 

 

 

 

 

 

 

 

1

 

 

3

 

 

1

 

4

 

 

 

13. π .

(0; –1).

9.

x + y + z = C , x2 + y2 + z2 = C . 10.

x +

 

=

,

x +

=

. 11. π.

12.

4π.

 

 

 

 

1

1

 

 

 

y

2

 

 

z

3

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.

πR4

.

15. 36π. 16. 9π.

17. −π. 18. –27. 19.

πR6

 

 

 

 

 

 

 

 

rot r = 0.

2

8

. 20. 2π. 21. 0. 22. div r = 3,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23. 2 j 4k. 24.

2i 5 j 8k.

25. u = x4 y + xy2 + yz2 3x + y + C.

 

 

 

 

 

 

Micromodule 9

SELF-TEST ASSIGNMENTS

9.1. Calculate the flux of the vector F(x, y, z) across the outer surface of the pyramid

bounded by coordinate planes, and the given sloping plane, using GaussOstrogradsky formula.

 

 

F(x, y, z)

Equation of plane α

 

 

 

 

 

9.1.1

F = xyi + (x4 y) j + (z 2y)k

2x + y + 2z = 2

9.1.2

 

 

= xi + (2 z) j + (z2 + 2x)k

2x 6 y + 3z = 6

F

9.1.3

F = xzi + (2x3 + y) j + (z 3y)k

2x + 2 y z = 2

9.1.4

F = (z x)i + (z + y2 ) j + (x2 + 2 y)k

3x 6 y + 2z = 6

9.1.5

F = (x + 2)i + (z 2 y) j + z2 k

2x + 2 y z = 2

9.1.6

 

 

= x2 i + (2 z) j + (z + 2x)k

3x 2y + 6z = 6

F

9.1.7

F = ( yx + 1)i + (2z x) j + zk

2x + y 4z = 4

 

 

 

9.1.8

F = (x + z)i + (xy 2) j + (3x + y)k

3x + 2 y 6z = 6

 

 

 

9.1.9

F = (2x + yz)i + (2 y x) j + z2 k

6x 4 y + 3z = 12

9.1.10

F = (x2 1)i + (x zy) j + (x + yz)k

6x + 3y + 4z = 12

9.1.11

F = (xy + 1)i + (2z 3y) j + 3zk

4x 6 y + 3z = 12

 

 

 

9.1.12

F = (x + 2 yz)i + (3y x) j + ( y 2z)k

6x 4y 3z = 12

 

 

 

9.1.13

F = (xz 3)i + (x3 + 2 y) j + (z 3y)k

10x 4y + 5z = 20

9.1.14

F = (z x)i + (2 + y2 ) j + (x + 2 y)k

12x 20y + 15z = 60

225

http://vk.com/studentu_tk, http://studentu.tk/

F(x, y, z)

Equation of plane α

 

 

 

9.1.15

F = (xy 2)i + (z 2y) j + 2zk

3x + 4y + 6z = 12

 

 

 

9.1.16

F = (x y)i + (4 zy) j + (z + 2x)k

15x 10 y + 6z = 30

 

 

 

9.1.17

F = (x2 + 1)i + (2z y) j + (z + 2)k

10x 4y 5z = 20

9.1.18

F = (x2 + z)i + xyj + (3x + y)k

6x 4y 3z = 12

9.1.19

F = (2x + yz)i + (3y x) j + (z y)k

4x 6 y + 3z = 12

 

 

 

9.1.20

F = xi + (x z) j + (x + yz)k

20x + 12y 15z = 60

 

 

 

9.1.21

F = (2x y)i + (12zy) j + z2 k

15x 6 y + 10z = 30

9.1.22

F = (x + y)i + (1+ y) j + (z + 4x)k

6x + 4y 3z = 12

 

 

 

9.1.23

F = x2 i + (2x + y) j + (z 3y)k

10x + 5y + 4z = 20

9.1.24

F = (z x)i + (z + 3y2 ) j + (x + 2 y)k

20x + 4y 5z = 20

9.1.25

F = (x + y)i + (z 2 y) j + zxk

2x 4y z = 4

 

 

 

9.1.26

F = xyi + (2 zy) j + ( y + 2x)k

5x 2y 10z = 10

 

 

 

9.1.27

F = xi + (2z x) j + zyk

2x 4y + z = 4

 

 

 

9.1.28

F = (x2 + z)i + xj + (3x + y)k

15x + 3y + 5z = 15

9.1.29

F = (2x + yz)i + (2 y x) j + zyk

2x 3y 6z = 6

 

 

 

9.1.30

F = xyi + (x zy) j + (x + yz)k

15x + 10y 6z = 30

 

 

 

9.2. Calculate the circulation of the vector field F along the line of intersection of the plane α with coordinate planes, using the direct calculation and Stokes’ formula (direction of integration is counter-clockwise, if to look from the origin of coordinates).

9.2.1.

F = (x + y)i + x2 yj + zy)k ,

α :

x + y + z = 2 .

9.2.2.

F = xzi + ( y z) j + z2 k ,

α :

x y + z = 1 .

9.2.3.

F = xzi + (x + y) j + (z + y)k ,

α :

x + 2 y + z = 2 .

9.2.4.

F = (x y)i + (z + y) j + 4k ,

α :

x 3y + z = 3 .

9.2.5.

F = xyi + zyj + (z2 + x2 )k ,

α :

x + y 5z = 5 .

9.2.6.

 

 

= (x + 2)i + ( y 2z) j + (z + x)k ,

α :

2x + 3y + z = 6 .

F

226

http://vk.com/studentu_tk, http://studentu.tk/

9.2.7.F = (x + y)i + ( y z) j + (z + 2x)k ,

9.2.8.F = xzi + xyj + yk ,

9.2.9.F = (x + 3z)i + 2 j + (z2 + 1)k ,

9.2.10.F = (2x + y)i + zyj + xzk ,

9.2.11.F = (x + y)i + zyj + 2k ,

9.2.12.F = (x + 1)i + ( y + z) j + zk ,

9.2.13.F = xzi + (2y + 1) j + (z y)k ,

9.2.14.F = zi + yj + xk ,

9.2.15.F = (x + y)i + (z + y) j + (x + z)k ,

Calculate the circulation of the vector field the direct calculation and Stokes’ formula

9.2.16.F = (x2 y2 )i + 4 j + (z + x)k ,

9.2.17.F = (x2 + y2 )i + zyj + 3k ,

9.2.18.F = (x + z)i + 4 j + (z2 x)k ,

9.2.19.F = 2xyi + ( y2 + 2z) j 2k ,

9.2.20.F = xi + yj + (z2 + y2 )k ,

9.2.21.F = yi + xj + (z2 y2 )k ,

9.2.22.F = (x + y)i + (z + y) j + (z + x)k ,

9.2.23.F = x2 i + y2 j + zk ,

9.2.24.F = (z + x)i + zj + yk ,

9.2.25.F = (x2 + y)i + ( y2 + z) j + k ,

9.2.26.F = xyi + zyj + yzk ,

9.2.27.F = xi + zxj + (z + y)k ,

9.2.28.F = (x2 + z2 )i + 3 j + zk ,

9.2.29.F = (x y)i + ( y z) j + (z x)k ,

9.2.30.F = 2i + y2 xj + zk ,

α: 2x + y + z = 2 .

α: 3x + y z = 3 .

α: 6x + 2 y + 3z = 6 .

α: x y z = 1 .

α: x + y + 4z = 4 .

α: x + 2 y + 3z = 6 .

α: 2x + 4 y + z = 8 .

α: 5x + y + z = 5 .

α: 3x + 2y + 2z = 6 .

F along the closed line L, using

L: x2 + y2 = 4, z = 2.

L: z = x2 + y2 , z = 4.

L: x2 + y2 + z2 = 10, x = 1. L: x2 + z2 = 1, y = 0.

L: y = x2 + z2 , z = 1.

L: x2 + y2 + z2 = 5, z = 1.

L: z2 + y2 = 9, z = 0.

L: x = z2 + y2 , x = 9.

L: x2 + z2 = 1, x + y + z = 1.

L: x2 + y2 = 1, z = 4.

L: z = x2 + y2 3, z = 1. L: x2 + y2 = 4, x + z = 0.

L: x2 + z2 = 9, y = 2.

L: x = y2 + z2 + 2, z = 6. L: x2 + z2 = 4, y + z = 0.

9.3. Prove the vector field to be potential and find its potential.

9.3.1.F = (3x2 + y2 )i + (2xy + z) j + ( y + 3z2 )k.

9.3.2.F = (2x + y + z)i + (x + 2 y + z) j + (x + y + 2z)k.

9.3.3.F = (4x3 + yz)i + (4 y3 + xz) j + (xy + 4z3 )k.

227

http://vk.com/studentu_tk, http://studentu.tk/

9.3.4.F = (3x2 + y2 z3 )i + (3y2 + 2xyz3 ) j + 3z2 (xy2 1)k.

9.3.5.F = ( y2 z2 + 2xy)i + (2xyz2 + x2 ) j + 2xy2 z2 k.

9.3.6.F = (2xyz3 1)i + (x2 z3 + 2) j + (3x2 yz2 + 3)k.

9.3.7.F = (x + y + 2z)i + (x + y + 3z) j + (2x + 3y + z)k.

9.3.8.F = (2x + 2)i + (2 y 3) j + (2z + 4)k.

9.3.9.F = (x + y z)i + (x y + z) j + (z + y x)k.

9.3.10.F = (2x z3 )i + 2( y + z) j + (2 y 3xz2 )k.

9.3.11.F = (4x3 y2 z 1)i + 2x4 yzj + (x4 y2 + 2z)k.

9.3.12.F = (2xy4 z4 + y)i + (4x2 y3 z4 + x) j + (4x2 y4 z3 1)k.

9.3.13.F = (3x2 + 3z + 2)i + (3y2 1) j + 3(x + z2 )k.

9.3.14.F

9.3.15.F

=(3x

=yz

2 y2 z + yz2 )i + (2x3 yz + xz2 ) j + (x3 y2 +

 

z

 

yz

x

 

z

 

xz

x

 

y

 

+

 

 

 

 

i +

 

+

 

 

 

j +

 

 

+

 

 

 

2

 

 

 

2

 

 

 

y

 

x

 

 

 

 

y

 

y

x

 

 

 

 

 

z x

 

 

 

 

 

2xy)k.

xy

z2 k.

9.3.16.F = (x + 2 y z)i + (2x y + 3z) j + (z + 3y x)k.

9.3.17.F = (3z2 + y2 x3 )i + (3y2 + 2zyx3 ) j + 3x2 (zy2 1)k.

9.3.18.F = (2xyz3 1)i + ( y2 z3 + 2) j + 3( y2 xz2 + 1)k.

9.3.19.F = ( y2 z2 + 2xz)i + (2xzy2 + x2 ) j + 2xz2 y2 k.

9.3.20.F = (2 y z3 )i + 2(x + z) j + (2x 3yz2 )k.

9.3.21.F = (4z3 y2 x 1)i + 2z4 yxj + (z4 y2 + 2x)k.

9.3.22.F = (2 yx4 z4 + x)i + (4 y2 x3 z4 + y) j + (4 y2 x4 z3 1)k.

9.3.23.F = (3x2 + 3y + 2)i + (3z2 1) j + 3(x + y2 )k.

9.3.24.F = (3z2 y2 x + yx2 )i + (2z3 yx + zx2 ) j + (z3 y2 + 2zy)k.

9.3.25.F = (2xz4 4)i + 2yzj + (4x2 z3 + y2 )k.

9.3.26.F = (2xz + y3 )i + 3xy2 j + (x2 3z2 )k.

9.3.27.F = (2xy4 z y2 )i + (4x2 y3 z 2xy) j + (x2 y4 + 2)k.

9.3.28.F = (ln y + zx1 )i + (ln z + xy1 ) j + (ln x + yz1 )k.

9.3.29.F = (2e2x y ez )i + (e2x + ey z2 ) j + (2zey xez )k.

9.3.30.F = (sin y 2z cos 2x)i + (x cos y + cos z) j ( y sin z + sin 2x)k.

228

http://vk.com/studentu_tk, http://studentu.tk/

LITERATURE

1.Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. —

М.: Наука, 1987. — 600 с.

2.Валєєв К. Г., Джалладова І. Л. Вища математика: Навчальний посіб-

ник: У 2-х ч. — К.: КНЕУ, 2001.— Ч. 2. — 451 с.

3.Дубовик В. П., Юрик І. І. Вища математика. — К.: А.С.К., 2001. —

648 с.

4.Заварыкин В. М., Житомирский В. Г., Лапчик М. П. Численные ме-

тоды. — М.: Просвещение, 1991. — 172 с.

5.Краснов М. Л., Киселев А. И., Макаренко Г. И., Шикин Е. В., Заля-

пин В. И., Соболев С. К. Вся высшая математика: Учебник, Т. 4. — М.: Эдиториал УРСС, 2001. — 352 с.

6.Овчинников П. П., Яремчук Ф. П., Михайленко В. М. Вища мате-

матика: Підручник. У 2 ч. Ч. 1: Лінійна і векторна алгебра. Аналітична геометрія. Вступ до математичного аналізу. Диференціальне і інтегральне числення. — К.: Техніка, 2000. — 592 с.

7.Овчинников П. П. Вища математика: Підручник. У 2 ч. — Ч. 2: Диференціальні рівняння. Операційне числення. Ряди та їх застосування. Стійкість за Ляпуновим. Рівняння математичної фізики. Оптимізація і керування. Теорія ймовірностей. Числові методи. — К.: Техніка, 2000. — 792 с.

8.Пак В. В., Носенко Ю. Л. Вища математика: підруч. — Д.: «Видавництво Сталкер», 2003. — 496 с.

9.Пискунов Н.С. Дифференциальное и интегральное исчисления. —

М.: Наука, 1985. — Т. 2. — 456 с.

10.Письменный Д. Т. Конспект лекций по высшей математике. 2 часть. — 2-е изд., испр. — М.: Айрис-пресс, 2003. — 256 с.

11.Фильчаков П. Ф. Численные и графические методы прикладной математики. — К.: Наукова думка, 1970. — 792 с.

12.Денисюк В. П., Репета В. К., Гаєва К. А., Клешня Н. О. Вища мате-

матика: Навч. посіб.: У 4 ч. — Ч. 3. — К.: Вид-во Нац. авіа. ун-ту «Нау-Друк», 2009. — 444 с.

229

http://vk.com/studentu_tk, http://studentu.tk/

CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Module 1. SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 4

Micromodule 1.

Number series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

Micromodule 2.

Functional series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

Micromodule 3.

Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69

Micromodule 4.

Fourier integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87

Module 2. MULTIPLE INTEGRALS. LINE AND SURFACE

INTEGRALS. FIELD THEORY . . . . . . . . . . . . . . . . . . . . . . 98

Micromodule 5. Double integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Micromodule 6. Triple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Micromodule 7. Line integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Micromodule 8. Surface integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Micromodule 9. Field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

230

http://vk.com/studentu_tk, http://studentu.tk/

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]