Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Higher_Mathematics_Part_3

.pdf
Скачиваний:
304
Добавлен:
19.02.2016
Размер:
9.11 Mб
Скачать

This series is convergent by d’Alembert’s test if | x | lim

an+1

 

< 1. Then

a

 

 

 

 

 

 

 

 

 

n→∞

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

| x |<

 

1

 

= lim

 

an

 

 

 

 

 

 

 

 

.

 

 

 

 

 

a

 

an+1

 

 

 

 

 

 

 

n→∞

 

 

 

 

 

lim

 

n+1

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

n→∞

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

Then the radius of convergence is

R = lim

 

an

 

.

 

 

a

n→∞

 

 

 

n+1

 

 

 

 

 

 

By analogy we may use Cauchy’s test and receive

1

 

 

 

R =

 

 

 

.

lim n | a

n

|

 

n→∞

 

 

 

 

 

 

Remark. If lim an+1 = 0 then R = ∞.

n→∞ an

(2.4)

(2.5)

2.6.Properties of Power Series

1.Power series (2.2) absolutely and uniformly converges on any segment [a; a] which lies completely within (R; R).

2.On every interval completely within the interval of convergence the sum of power series is a continuous function.

3.(Differentiation of power series) We can differentiate a power series term-

by-term within the interval of convergence. If a power series

S (x) = a0 +

+ a1x + a2 x2 + ... + an xn + ... has an interval of convergence (R; R)

therefore the

series γ (x) = a1 + 2a2 x + 3a3 x2 + ... + nan xn1 + ... obtained by termwise differenti-

ation of series

a + a x + a x2

+ ...+ a xn + ... has the same interval of convergence

(R; R) and

0

1

2

n

γ (x) = S(x)

within this interval. That is, within the interval of

convergence

the

derivative of the sum of the power series a0 + a1 x +

+ a2 x2 + ... + an xn + ...

is equal to the sum of the series obtained by termwise

differentiation.

 

 

 

 

 

 

 

41

http://vk.com/studentu_tk, http://studentu.tk/

If

S(x) = an xn ,

n=1

then

S(x) = nan xn1.

n=1

Theorem If a power series converges in an interval (R; R), its sum is a

function which has derivatives of any order within the interval of convergence. Each of these derivatives is a sum of the series resulting from term-by-term differentiation of the given series at appropriate number of time. The interval of convergence of each series obtained by differentiation is the same

interval (R; R).

4. (Integration of power series) If the limits of integration α and β lie within the interval of convergence of a power series then the integral of the sum of the series is equal to the sum of integrals of the terms of series. This series has the

same interval of convergence (R; R).

 

 

 

 

 

 

 

 

 

 

 

 

 

If S(x) = an xn then

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

β

 

β

n

 

β

n

dx.

 

 

 

S(x) dx =

an x

dx =

an x

 

 

 

 

α

 

α n=1

 

n=1 α

 

 

 

If the segment of integration is [0; x] (R; R)

 

 

 

 

and S(x) = an xn then

 

 

 

 

 

 

 

 

 

 

 

n=1

 

x

x

n

x

 

n

 

 

 

xn+1

 

S(x) dx = ∫ ∑an x

dx = ∑ ∫ an x

 

dx = an

 

.

 

 

 

 

0

0 n=1

 

n=1 0

 

 

 

n=1

n + 1

 

 

 

 

 

 

 

 

 

 

 

 

5. We can add, subtract and multiply power series an xn and bn xn

with

radii of convergence R1

and

R2 respectively.

 

 

 

n=0

 

 

n=0

 

 

 

 

 

 

 

 

 

 

 

 

2.7. Taylor’s Series

 

 

 

 

 

 

 

Suppose a function

f (x)

is defined at some neighborhood of a point x0

and

has derivatives of all orders. Can we write this function as a power series in powers of x x0 ? That is,

f (x) = a

+ a (x x ) + a (x x )2

+ ... + a (x x )n + ... .

(2.6)

0

1

0

2

0

n

0

 

Let’s find the coefficients of the given series. To do it let’s differentiate a series (2.6) with respect to х:

42

http://vk.com/studentu_tk, http://studentu.tk/

 

f (x) = a

 

+ a (x x ) + a (x x )2

+ ... + a (x x )n + ...

 

 

 

 

 

0

1

0

2

0

 

 

n

0

 

 

 

 

 

f (x) = a +

2a (x x ) + 3a (x x )2

+

...+ na (x x )n1 + ...

 

 

 

1

 

2

0

3

0

 

2

n

0

 

n2

 

′′

 

2a3 (x x0 ) + 4 3a4 (x x0 )

... + n(n 1)an (x x0 )

+ ...

f

(x) = 2 1a2 + 3

 

 

 

f

′′′

+ 4 3 2a4 (x x0 ) + ... + n(n 1)(n

2)an (x x0 )

n3

+ ...

(x) = 3 2 1a3

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If we substitute x = x0 we get

 

 

a0 = f (x0 ), a1 =

 

f

(x )

, a2

=

 

f ′′(x )

 

 

 

 

an =

 

f (n) (x )

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

0

, ,

 

0

 

, .

 

 

 

 

 

 

1!

 

 

 

2!

 

 

 

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore a formula (2.6) will be

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x) = f (x

) +

 

f (x0 )

(x x

) +

f ′′(x0 )

 

(x x

 

)2 + ... +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

1!

 

 

 

 

 

 

0

 

 

 

2!

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

f (n) (x )

(x x )n + ... .

 

 

 

 

 

 

 

(2.7)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n!

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition. A series

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

(x )

 

 

 

 

 

f ′′(x )

(x x )2 + ... +

 

f (n) (x )

(x x )n + ...

 

f (x ) +

 

 

0

(x x )

+

 

 

 

 

0

 

 

 

 

 

0

 

(2.8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

1!

 

0

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

n!

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is called a Taylor’s series of a function

f (x) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If a function f (x) has at a point

 

x0

 

and its neighborhood all derivatives up

to the

(

n +

)

th

order inclusively

 

then

for

 

any

x

from

this neighborhood

 

1

 

 

Taylor’s formula is true

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x) = f (x0 ) +

 

 

f (x0 )

 

(x x0 ) +

 

f ′′(x0 )

 

(x x0 )2 + …+

 

 

 

 

 

 

 

 

 

1!

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

f

(n) (x )

(x x )n

 

+ R

(x) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n!

 

 

 

 

 

 

 

 

0

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (n+1) (c)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

R (x) =

(x x )n+1

 

 

 

is

 

 

a

remainder

of

 

Lagrange’s

form,

 

 

 

 

 

 

 

 

 

 

n

 

 

 

(n + 1)!

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c = x0 + θ(x x0 ), 0 < θ < 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taylor’s series (2.8) converges to the function

 

f (x) in an interval

Theorem 1

 

 

 

 

 

 

(x0 R; x0 + R)

if and only if a function

f (x) has derivatives of

all orders and remaining member of Taylor’s formula tends to zero if n → ∞ for all x from this interval:

lim Rn (x) = 0 , x (x0 R; x0 + R).

n→∞

43

http://vk.com/studentu_tk, http://studentu.tk/

Theorem 2

If a function

f (x) has derivatives of all orders in an interval

 

(x0 R; x0 + R) and there is a number M > 0 such as

 

 

f (n) (x)

 

< M ,

x (x0 R; x0 + R) , n =1, 2, ...,

 

 

 

then a function f (x) can be expanded into Taylor’s series. This series converges to the given function.

Definition. If x0 = 0 then series (2.8) is called a Maclaurin’s series. It looks like

 

 

f

′′

 

 

f

(n)

(0)

 

 

f (x) = f (0) +

f (0)

x +

(0)

x2

+ ... +

 

xn + ...

(2.9)

1!

 

2!

 

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8. An Expansion of Elementary Functions

into Maclaurin’s Series

To expand a function f (x) into the Maclaurin’s series, it is needed:

1) to calculate values of derivatives f (x), f ′′(x), ..., f (n) (x) , ... at point x = 0 ;

2)to write down a series (2.8) and find the interval of its convergence;

3)to define an interval in which remaining member of Maclaurin’s formula

Rn (x) 0 if n 0.

Let’s write expansions of some elementary functions into Maclaurin’s series (Table 2.2):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maclaurin’s series of a function

 

f (x)

 

Domain of convergence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

x

 

 

x2

 

 

x3

 

 

 

xn

 

 

 

−∞ < x < ∞

e = 1 + 1! + 2! + 3! + …+

 

 

n! + …

 

 

 

 

 

sin x = x

x3

+

x5

− …+ (1)n

 

 

 

x2n+1

 

+ …

−∞ < x < ∞

 

 

 

 

 

(2n + 1)!

 

3!

 

 

5!

 

 

 

 

 

 

 

cos x = 1

x2

+

x4

− …+ (1)n

 

x2n

 

+ …

−∞ < x < ∞

 

 

 

(2n)!

 

2!

4!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

x3

 

 

 

 

n1 xn

 

1 < x 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln(1+ x) = x 2 + 3 − …+ (1)

 

 

n

 

+ …

 

 

 

 

 

 

 

 

x3

 

 

x5

 

 

 

 

n

 

x2n+1

 

 

1 x 1

arctg x = x 3

+ 5

 

− …+ (1)

 

 

2n + 1 + …,

 

 

 

 

44

http://vk.com/studentu_tk, http://studentu.tk/

End of table 2.2

Maclaurin’s series of a function f (x)

(1 + x)m = 1 +

m

x +

m(m 1)

x2 +

m(m 1)(m 2)

x3

+

 

 

 

 

 

 

 

 

 

1!

 

2!

3!

 

 

+…+

m(m 1)(m 2)

(m (n 1))

xn + …

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

= 1x + x2 x3

+ …+ (1)n xn + …

 

1 + x

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

= 1

+ x + x2 + x3 + …+ xn + …

 

 

1 x

 

 

 

 

 

 

 

 

 

 

 

Domain of convergence

1 x 1, if m 0;

1 < x 1,

if m ( 1; 0);

1 < x < 1, if m ≤ −1.

1 < x < 1

1 < x < 1

2.9. Some Applications of Power Series

The power series are used for the approximate calculation of values of functions, definite integrals, solutions of differential equations which satisfy initial conditions, and others like.

 

2.9.1. Approximate Calculation of Values of Functions

 

 

 

Suppose we want to calculate the value of function

f (x) at

x = x0 .

If a

function f (x)

 

can be expanded in a power series in an interval

(R; R)

and

 

x0 (R; R) then a value f (x0 )

equals the sum of this series at a point

x = x0 .

Approximate

value equals the

partial sum Sn (x0 ) .

An absolute

error

 

f (x0 ) Sn (x0 )

 

=

 

r(x0 )

 

can be found estimating the remainder of a series rn (x0 ) .

 

 

 

 

Thus for alternating series (series of Leibniz’ Type) the following estimation is true:

r(x0 ) = un+1 (x0 ) un+2 (x0 ) + … < un+1 (x0 ) .

In the case of series with positive terms we can use the following estimation:

r(x0 ) = un+1 (x0 ) + un+2 (x0 ) + … ≤ un+1 (x0 ) + un+2 (x0 ) + … .

If there exists a series an with positive terms such as

n=1

un+1 (x0 ) a1, un+2 (x0 ) a2 , ,

45

http://vk.com/studentu_tk, http://studentu.tk/

then

r(x0 ) an .

n=1

2.9.2. Approximate Calculation of Definite Integrals

b

Let it is needed to calculate a definite integral f (x)dx. Suppose an antide-

a

rivative F(x) is not expressed through elementary functions or it is difficult to find it. In this case we make the following actions:

1)set an accuracy of calculation ε > 0 ;

2)expand an integrand f (x) into the power series ( into Maclaurin’s series);

3)use property about term-by-term integration of power series if interval of integration [a; b] belongs to the interval of convergence (R; R) .

Determination of the error of calculations is the same as for the calculation of values of functions.

2.9.3. Approximate Solution of Differential Equations

Suppose the solution of a differential equation is not expressed through elementary functions or integration of equation is complicated. Then we apply approximate solution of a differential equation using the Taylor’s series.

Suppose it is needed to solve the Cauchy’s problem, that is, to find partial solution of equation

 

 

 

 

 

y′ =

f (x, y),

 

 

 

(2.10)

which satisfies an initial condition

y(x0 ) = y0 .

 

 

 

 

We find the solution of equation as the Taylor’s series

 

 

 

y = y(x ) +

y

(x )

(x x ) +

y′′(x )

(x x )2 + ... +

y(n) (x )

(x x )n

+ ...

 

0

 

0

 

0

 

 

 

 

 

 

0

 

1!

0

 

 

2!

 

0

n!

 

0

 

 

 

 

 

 

 

 

 

 

 

where y(x0 ) = y0

is

the initial condition, and other coefficients

y(x0 ),

y′′(x ), ..., y(n) (x ),...

are the subjects to determination. Putting in differential

0

0

 

x = x0 ,

y = y0 , we will define a coefficient

y(x0 ). That

equation (2.10) values

is y(x0 ) = f (x0 ,

y0 ). To find a coefficient y′′(x0 ) we differentiate both parts of

equation with respect to x : ( y)′ = ( f (x, y)). We get

y′′ = f1 (x, y,

y) . Putting

in right part of this equation

x = x0 ,

y = y0 , y′ = y(x0 ) we’ll obtain the value

y′′(x0 ). Continuing the process of differentiation and substituting in right part of the received equations the known values, we’ll obtain coefficients y′′′(x0 ),

46

http://vk.com/studentu_tk, http://studentu.tk/

y(4) (x0 ) . Taylor’s series with obtained coefficients is the solution of equation

(2.10) for those values x at which it is convergent. The partial sum of this series is the approximate solution of the Cauchy’s problem.

Remark. 1. Considered method is applicable for the solution of differential equations of any order.

2. We do not examine a question concerning the error of approximate solution of differential equation.

Micromodule 2

EXAMPLES OF PROBLEM SOLUTIONS

Find the domain of convergence of functional series.

1

 

 

 

 

Example 1.

 

 

 

.

 

 

 

 

2

+ x1

 

 

 

n=1 nx

 

1

 

 

 

 

 

 

 

 

Solution. Generalized harmonic series

is convergent for

p > 1.

p

 

 

 

 

n=1 n

 

Then the given

series converges if x2 + x 1 > 1. That is

x2 + x 2 > 0.

Therefore, the domain of convergence of this series is x (−∞; 2) (1; ).

n

Example 2. .

n=1 2nx

Solution. The given series is defined for all real x and the terms of this series are positive. Let’s use d’Alembert’s test:

 

 

 

l(x) = lim

n + 1

 

2nx

 

=

1

lim

n + 1

=

1

.

 

 

 

 

 

n

 

 

n

 

 

 

 

n→∞ 2(n+1) x

 

 

 

2x n→∞

 

2x

A series is convergent if l(x) < 1. Then

 

 

 

 

 

 

 

 

 

 

1

< 1,

 

2x

> 1,

x > 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x

 

 

 

 

 

 

 

 

 

 

If

x = 0 then l(x) = 1. Let’s investigate this series for convergence at point

 

n

 

 

 

 

 

 

 

 

 

 

x = 0.

=n is a divergent series.

 

 

 

 

 

 

2n 0

 

 

 

 

 

 

 

n=1

n=1

 

 

 

 

 

 

 

 

 

 

Therefore, the domain of convergence of the given series is an interval (0; ) .

 

1

 

 

Example 3.

 

 

.

1

+ x

n

n=1

 

 

Solution. The given series is defined for all real x except one point x = −1. Let’s consider the following cases:

47

http://vk.com/studentu_tk, http://studentu.tk/

1)

 

x =1. Then

 

un =

1

doesn’t tend to zero. Therefore the given series is

2

divergent if x = 1 ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2)

 

1 < x < 1. Then

lim xn = 0,

lim

 

1

 

= 1

0.

 

Therefore

the given

 

 

 

 

series is divergent;

 

 

 

 

n→∞

n→∞ 1+ xn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)

x (−∞; 1) (1; ) . Let’s prove the series to be convergent.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The series

1

 

is convergent for all

x such as

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

< 1, That is

 

x

 

 

 

 

1

xn

 

= lim

 

 

xn

 

 

= lim

 

 

1

 

 

= 1.

 

 

 

 

> 1, and lim

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xn

1

+ xn

1+ xn

1

 

 

 

 

 

 

 

 

 

 

 

 

n→∞

 

 

 

 

n→∞

 

n→∞

 

+ 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xn

 

 

We use comparison test of convergence. Then the given series is convergent for x > 1 .

Therefore, the domain of convergence of the given series is (−∞;1) (1;). Investigate the functional series for uniform convergence.

sin nx

Example 4. .

n=1 n3

Solution. The given series is defined for all real x (−∞; ). It is plus-and- minus functional series. Let’s prove this series to be absolutely and uniformly

1

convergent for all real x. We use Weierstrass’ test. Numerical series

n=1 n3

 

 

 

 

 

 

 

 

 

sin nx

is

convergent

and it

is

dominating series for the series

 

 

.

n

3

| sin nx |

 

1

 

 

 

n=1

 

 

,

n = 1, 2,

for all x (−∞; ) . Therefore the given series is

 

 

 

 

 

n

3

n

3

 

 

 

 

 

 

 

 

 

 

 

absolutely and uniformly convergent by Weierstrass’ test.

 

 

 

(1)n+1

Example 5. . n=1 n + | x |

Solution. The given series is defined for all real x. It is plus-and-minus functional series. It is an alternating functional series. We’ll estimate a

remainder

| r |< | u

n+1

|=

 

1

 

1

 

. This estimation is carried out for all

 

 

 

 

 

 

n

 

n + 1+ | x |

 

n + 1

 

 

x (−∞; ). Let’s ε > 0. It is needed to specify a number N = N(ε),

dependent

on ε and

not dependent

on x,

that

for all n > N and for all

x D the

following inequality is true

rn (x) < ε.

48

http://vk.com/studentu_tk, http://studentu.tk/

For the given series

an

inequality

 

rn (x)

 

< ε is true for all real x and

 

 

n > N(ε), where

N(ε) =

 

1

 

 

([a] is a whole part of number а). That is why

 

 

1

ε

 

 

 

 

 

 

 

 

 

 

a series converges uniformly for all

x (−∞; ) . However this convergence is

 

(1)

n+1

 

 

1

 

 

 

 

 

not absolute because

 

 

=

 

. It is divergent (compare it with the

n + |

x |

 

 

n=1

 

n=1 n + | x |

 

harmonic series). Consequently, an initial series converges conditionally, but not absolutely.

Find the domain of convergence of power series.

 

n

Example 6.

(1)n+1

(x 5)

.

n

n=1

 

n 3

Solution. The given series is a power series. We evaluate the radius of convergence using formula (2.4). We receive

 

 

 

 

a

n

=

(1)n+1

, a

n+1

=

(1)n+ 2

;

 

 

 

 

 

 

 

 

 

n 3n

(n + 1)

3n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = lim

 

an

 

= lim

 

(1)n+1

 

(n + 1) 3n+1

 

= 3 lim

 

n + 1

 

= 3.

 

 

 

 

 

 

 

an+1

 

 

n 3n

 

(1)n+ 2

 

 

n

 

 

n

→∞

 

 

 

 

n→∞

 

 

 

 

 

 

n→∞

 

 

 

The interval

of

convergence is:

3 < x 5 < 3, 2 < x < 8.

 

Therefore, the

given series is absolutely convergent within the interval (2; 8).

Let’s investigate the behaviour of the series in the end points of interval. Suppose x = 2. Then this series is divergent:

 

 

 

 

 

 

n

 

 

 

(1)

2n+1

 

 

 

1

 

 

 

 

 

 

(1)n+1

(1)

 

=

 

 

 

= −

 

.

 

 

 

 

 

 

n

 

n

 

 

 

 

 

 

 

n=1

 

n 3

 

 

n=1

 

 

 

n=1 n

 

 

 

 

 

 

 

 

 

3

n

 

 

(1)

n+1

 

 

 

 

 

 

Suppose x = 8.

Then

(1)n+1

 

 

 

=

 

.

 

This series is conditio-

 

n

 

n

 

 

n

 

nally convergent.

 

 

 

 

n=1

 

 

3

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the domain of convergence of the given series is (2; 8] .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7. n!(x + 2)n .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution. By formula (2.4) we receive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = lim

 

an

 

 

 

 

 

n!

 

 

 

 

n!

 

 

1

 

 

 

 

 

= lim

 

 

 

= lim

 

 

= lim

 

= 0.

 

an+1

 

(n

+ 1)!

 

 

 

 

 

 

 

 

n→∞

 

 

n→∞

 

 

 

n→∞ n! (n + 1)

 

 

n→∞ n + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

http://vk.com/studentu_tk, http://studentu.tk/

The radius of convergence equals zero. Then this power series is convergent at one point x = −2.

 

n

n

2n

 

Example 8.

 

 

 

 

x

 

.

2n + 1

 

n=1

 

 

 

 

 

Solution. Let’s denote x2 = t. We obtain a power series

 

 

n

n

n

 

 

 

 

 

t

 

.

(2.11)

2n + 1

 

n=1

 

 

 

 

 

The radius of convergence of this series is calculated by the formula (2.5):

R =

 

1

= lim

 

1

 

 

= lim

2n + 1

= 2.

lim

n | a |

 

 

 

n

n

 

 

n→∞

 

n

 

n→∞

 

 

n→∞

n

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n + 1

 

 

 

 

 

Therefore, the series (2.11) converges for t (2; 2). We have to investigate

this series at the end points of interval of convergence. If t = 2, we’ll obtain a numerical series

 

n n

 

n

 

2n n

 

 

 

 

2

 

=

 

 

 

.

2n + 1

 

2n + 1

n=1

 

 

 

 

n=1

 

 

 

2n

n

 

 

1

 

 

n

1

 

Then for t = 2

 

lim

 

 

 

= lim 1

 

 

 

=

 

 

0.

the series (2.11) is

2n + 1

2n + 1

 

e

n→∞

 

n→∞

 

 

 

 

 

convergent. By analogy for

t = −2

the series (2.11) is convergent too. Conse-

quently, the series (2.11) is convergent within interval t (2; 2). Let’s define the domain of convergence of initial series:

x2 (2; 2), | x |< 2, 2 < x < 2.

2 2

Example 9. 5n xn .

n=1

Solution. A series is incomplete, that is why application of formulas (2.4), (2.5) is impossible. We use Cauchy’s test and get

 

 

 

 

 

 

 

 

 

0,

if

 

5 | x | < 1,

lim n

 

5

n2

x

n2

 

= lim(5 | x |)

n

 

if

5 | x | = 1,

 

 

 

 

 

 

 

= 1,

n→∞

 

 

 

 

 

 

n→∞

 

 

 

5 | x | > 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, if

Consequently, a series converges within interval

1

;

1

. At the end points

 

5

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

of the indicated interval a series is divergent.

50

http://vk.com/studentu_tk, http://studentu.tk/

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]