
- •Вступ Що вивчає фізика
- •Фізичні величини. Вимір фізичних величин
- •Спостереження і досліди - джерела фізичних знань.
- •Будова речовини
- •Розділ 1 механіка Механічний рух. Простір і час
- •Положення тіла або точки можна задати тільки відносно іншого тіла, яке називається тілом відліку.
- •Елементи кінематики
- •§1. Система відліку. Траєкторія, шлях, переміщення
- •Кінематикою називають розділ механіки, в якому рух тіл розглядається без з'ясування причин цього руху.
- •§2. Швидкість і прискорення руху
- •Прискорення
- •Приклад розв’язку задачі.
- •Рух тіл з прискоренням вільного падіння
- •§ 3. Рух по колу
- •Приклад розв’язку задачі.
- •Динаміка поступального руху
- •§4. Перший закон Ньютона. Маса. Сила
- •Динаміка - це розділ механіки, в якому вивчаються закони руху тіл і причини, які викликають, або змінюють ці рухи.
- •Взаємодія тіл. Сила.
- •Інерція. Маса тіла
- •Густина речовини
- •Перший закон Ньютона ( закон інерції)
- •§ 5. Другий закон Ньютона
- •§ 6. Третій закон Ньютона
- •§7. Сили в механіці. Закон всесвітнього тяжіння
- •Сила тяжіння.
- •Вага тіла Силу, з якою тіло внаслідок тяжіння до Землі діє на опору або підвіс, називають вагою тіла.
- •Невагомість
- •Сила тертя
- •Доцентрова сила
- •Відцентрова сила
- •Сила пружності. Закон Гука
- •§ 8. Закон збереження імпульсу
- •Тема 3 Робота і енергія
- •§ 9. Робота, енергія, потужність
- •Потужність. Одиниці потужності
- •Енергія. Закон збереження енергії.
- •Потенціальна енергія
- •Робота сили тяжіння дорівнює зміні потенціальної енергії тіла, узятій з протилежним знаком.
- •Робота сили пружності дорівнює зміні потенціальної енергії пружно деформованого тіла.
- •Закон збереження механічної енергії
- •Сума потенціальної і кінетичної енергії тіла або декількох тіл називається повною механічною енергією.
- •§ 10. Перетворення енергії і використання машин і механізмів. Коефіцієнт корисної дії
- •Розв’язок:
- •Тема 4 Динаміка обертального руху
- •§11. Рівновага тіл, які мають закріплену вісь обертання.
- •§12. Момент сили і момент інерції тіла відносно осі обертання.
- •Кінетична енергія обертального руху. Момент інерції.
- •Моменти інерції деяких тіл.
- •Теорема Штейнера.
- •§13. Основне рівняння динаміки обертального руху
- •§14. Момент імпульсу. Закон збереження моменту імпульсу
- •Розділ 2 основи молекулярної фізики і термодинаміки
- •Тема 5
- •Основні положення молекулярно-кінетичної теорії
- •§15. Дослідне підтвердження основних положень мкт Існування проміжків між частками
- •Малість розмірів часток речовини
- •Рух часток речовини
- •Дифузія
- •Взаємне притягання і відштовхування молекул
- •Швидкість руху часток і температура
- •Чим більша швидкість руху молекул тіла, тим вища його температура.
- •§16. Три стани речовини
- •§ 17. Кристалічні і аморфні тіла
- •Кристалізація аморфних тіл.
- •§ 18. Будова рідин
- •§ 19. Газоподібні тіла
- •Тема 6 Основні положення молекулярно-кінетичної теорії ідеального газу § 20. Ідеальний газ і його параметри
- •§ 21. Рівняння стану ідеального газу
- •§ 22. Газові процеси
- •§ 23. Основне рівняння мкт газів
- •§24. Температура
- •§25. Розподіл молекул за швидкостями
- •§ 26. Барометрична формула.
- •§ 27. Короткі відомості про атмосферу.
- •§ 28. Розподіл Больцмана
- •§ 29. Явища переносу
- •Середня довжина вільного пробігу і число зіткнень за секунду молекул газу.
- •Дифузія.
- •Теплопровідність
- •Внутрішнє тертя (в'язкість)
- •Тема 7 Перший закон термодинаміки
- •§ 30. Внутрішня енергія
- •§ 31. Перший закон термодинаміки Способи зміни внутрішньої енергії
- •§ 32. Теплоємність
- •§ 33. Перший закон термодинаміки для різних термодинамічних процесів
- •§ 34. Адіабатичний процес
- •Тема 8 Другий закон термодинаміки
- •§ 35. Теплові двигуни. Термодинамічні цикли. Цикл Карно
- •Двигун внутрішнього згорання
- •§ 36. Незворотність теплових процесів. Другий закон термодинаміки
- •§ 37. Статистичний зміст ентропії
- •Питання і задачі :
- •Розділ 3 електромагнетизм
- •Тема 8 Електростатика
- •§ 38. Електричний заряд. Закон Кулона
- •§ 39. Електричне поле
- •Принцип суперпозиції електричного поля.
- •§ 40. Потік вектора напруженості електричного поля. Теорема Гауса для електричного поля у вакуумі
- •Лінії напруженості електричного поля
- •§41. Робота електричного поля по переміщенню заряду. Потенціал
- •§ 42. Діелектрики і провідники в електричному полі. Поляризація діелектриків. Електроємність. Конденсатори
- •Електрична ємність
- •З'єднання конденсаторів
- •При послідовному з'єднанні конденсаторів складаються зворотні величини ємностей.
- •§43. Енергія електричного поля
- •Енергія зарядженого конденсатора дорівнює роботі зовнішніх сил, яку необхідно витратити, щоб зарядити конденсатор.
- •Тема 9 Електричний струм
- •§ 44. Сторонні сили. Електрорушійна сила. Напруга
- •§ 45. Закон Ома
- •§ 46. Послідовне і паралельне з'єднання провідників. Правила Кірхгофа
- •При послідовному з'єднанні повний опір кола дорівнює сумі опорів окремих провідників.
- •Правила Кірхгофа для розгалужених кіл
- •§ 47. Робота і потужність струму. Закону Джоуля-Ленца
- •Робота dA електричного струму I, що протікає по нерухомому провідникові з опором r, перетвориться в теплоту dQ, що виділяється в провіднику.
- •§ 48. Класична теорія електропровідності металів
- •Закон Ома
- •Закон Джоуля-Ленца.
- •Нині ведуться інтенсивні роботи по пошуку нових речовин з ще вищими значеннями Tкр.
- •Тема 10 Магнітне поле і його характеристики.
- •§49. Закон Ампера. Взаємодія паралельних струмів
- •§ 50. Закон Біо - Савара - Лапласа
- •§ 51. Теорема про циркуляцію вектора індукції магнітного поля
- •§ 52. Сила Лоренца
- •Тема 11
- •§ 53. Магнітне поле в речовині
- •Тема 12 Електромагнітна індукція
- •§ 54. Явище електромагнітної індукції. Правило Ленца
- •§ 55. Самоіндукція. Енергія магнітного поля
- •Енергія магнітного поля
- •Література
- •Тема 1
- •Національна металургійна академія України
- •49600, Г. Дніпропетровськ 5, пр. Гагаріна, 4
- •Редакційно-видавничий відділ нМетАу
§ 46. Послідовне і паралельне з'єднання провідників. Правила Кірхгофа
Провідники в електричних колах можуть з'єднуватися послідовно і паралельно.
При послідовному з'єднанні провідників (рис. 3.21) сила струму в усіх провідниках однакова:
I1 = I2 = I.
Рисунок 3.21.
За законом Ома, напруга U1 і U2 на кінцях провідниках становить:
U1 = IR1, U2 = IR2.
Загальна напруга U на обох провідниках дорівнює сумі напруг U1 і U2 :
U = U1 + U2 = I(R1 + R2) = IR,
де R - електричний опір усього кола. Звідси слідує:
R = R1 + R2.
При послідовному з'єднанні повний опір кола дорівнює сумі опорів окремих провідників.
Цей результат справедливий для будь-якого числа послідовно сполучених провідників.
При паралельному з'єднанні (рис. 3.22) напруги U1 і U2 на обох провідниках однакові:
U1 = U2 = U.
Сума струмів I1 + I2, що протікають по обох провідниках, дорівнює струму в нерозгалуженому колі:
I = I1 + I2.
Цей результат виходить з того, що в точках розгалуження струмів (вузли A і B) в колі постійного струму не можуть накопичуватися заряди. Наприклад, до вузла A за час Δt підтікає заряд IΔt, а витікає від вузла за той же час заряд I1Δt + I2Δt. Отже, I = I1 + I2.
Рисунок 3.22.
Записуючи на підставі закону Ома
тоді
.
При паралельному з'єднанні провідників величина, зворотна загальному опору кола, дорівнює сумі величин, зворотних опорам паралельно включених провідників.
Цей результат справедливий для будь-якого числа паралельно включених провідників.
Формули для послідовного і паралельного з'єднання провідників дозволяють у багатьох випадках розраховувати опір складного кола, що складається з багатьох резисторів. На рисунку 3.23 наведений приклад такого кола і вказана послідовність обчислень.
Рисунок 3.23.
Слід зазначити, що далеко не усі складні кола, що складаються з провідників з різними опорами, можуть бути розраховані за допомогою формул для послідовного і паралельного з'єднання. На рисунку 3.24 наведений приклад електричного кола, який не можна розрахувати, вказаним вище методом.
Рисунок 3.24.
Електричні кола, подібні до зображеного на рисунку 3.24, а також кола, що містять розгалуження декілька джерел, розраховуються за допомогою правил Кірхгофа.
Правила Кірхгофа для розгалужених кіл
Правила Кірхгофа, являються узагальненням закону Ома на випадок розгалужених електричних кіл.
У розгалужених колах можна виділити вузлові точки (вузли), в яких сходяться не менше трьох провідників (рис. 3.25). Струми, впадаючі у вузол, прийнято вважати позитивними; струми, витікаючі з вузла, - негативними.
Рисунок 3.25.
У вузлах кола постійного струму не може відбуватися накопичення зарядів. Звідси слідує перше правило Кірхгофа :
Сума сил струмів для кожного вузла в розгалуженому колі дорівнює нулю:
I1+I2+I3+..+In =0.
Перше правило Кірхгофа є наслідком закону збереження електричного заряду.
Рисунок 3.26. Рисунок 3.27
У розгалуженому колі завжди можна виділити деяку кількість замкнутих шляхів, що складаються з однорідних і неоднорідних ділянок. Такі замкнуті шляхи називаються контурами. На різних ділянках виділеного контуру можуть протікати різні струми. На рисунку 3.26 представлений простий приклад розгалуженого кола. Коло містить один незалежний вузол (a або d), і три контури abcd, adef і abcdef. З них тільки два є незалежними (наприклад, abcd і adef), оскільки третій не містить ніяких нових ділянок. Запишемо узагальнений закон Ома для ділянок контурів кола, зображеного на рисунку 3.26, наприклад, abcd. Для цього на кожній ділянці треба задати позитивний напрям струму і позитивний напрям обходу контуру.
При записі узагальненого закону Ома для кожної з ділянок необхідно дотримувати певні "правила знаків", які пояснюються на рисунку 3.27Для ділянок контуру abcd узагальнений закон Ома записується у виді, :
Для ділянки bc : I1R1 = Δφbc - ε 1.
Для ділянки da : I2R2 = Δφda - ε2.
Складаючи ліві і праві частини цієї рівності і зважаючи, що Δφbc = - Δφda, отримаємо:
I1R1 + I2R2 = Δφbc + Δφda – ε 1- ε 2 = – ε 1 – ε 2.
Аналогічно, для контуру adef можна записати:
- I2R2 + I3R3 = ε 2+ε3 .
Друге правило Кірхгофа можна сформулювати так: сума добутків опору кожного з ділянок будь-якого замкнутого контуру розгалуженого кола постійного струму на силу струму на цій ділянці дорівнює сумі ЕРС уздовж цього контуру.
Друге правило Кірхгофа є наслідком узагальненого закону Ома.
Перше і друге правила Кірхгофа, записані для усіх незалежних вузлів і контурів розгалуженого кола, дають в сукупності необхідне і достатнє число алгебраїчних рівнянь для розрахунку електричного кола. Для кола, зображеного на рисунку 3.26, система рівнянь для визначення трьох невідомих струмів I1, I2 і I3 має вигляд:
I1R1+I2R2= – ε 1– ε 2.
-I2R2+I3R3= ε 2+ ε 3.
-I1+I2+I3=0.
Таким чином, правила Кірхгофа зводять розрахунок розгалуженого електричного кола до розв’язку системи лінійних рівнянь . Якщо в результаті розв’язку сила струму на якійсь ділянці виявляється негативною, то це означає, що струм на цій ділянці йде в напрямі, протилежному до вибраного позитивного напряму.