
- •Вступ Що вивчає фізика
- •Фізичні величини. Вимір фізичних величин
- •Спостереження і досліди - джерела фізичних знань.
- •Будова речовини
- •Розділ 1 механіка Механічний рух. Простір і час
- •Положення тіла або точки можна задати тільки відносно іншого тіла, яке називається тілом відліку.
- •Елементи кінематики
- •§1. Система відліку. Траєкторія, шлях, переміщення
- •Кінематикою називають розділ механіки, в якому рух тіл розглядається без з'ясування причин цього руху.
- •§2. Швидкість і прискорення руху
- •Прискорення
- •Приклад розв’язку задачі.
- •Рух тіл з прискоренням вільного падіння
- •§ 3. Рух по колу
- •Приклад розв’язку задачі.
- •Динаміка поступального руху
- •§4. Перший закон Ньютона. Маса. Сила
- •Динаміка - це розділ механіки, в якому вивчаються закони руху тіл і причини, які викликають, або змінюють ці рухи.
- •Взаємодія тіл. Сила.
- •Інерція. Маса тіла
- •Густина речовини
- •Перший закон Ньютона ( закон інерції)
- •§ 5. Другий закон Ньютона
- •§ 6. Третій закон Ньютона
- •§7. Сили в механіці. Закон всесвітнього тяжіння
- •Сила тяжіння.
- •Вага тіла Силу, з якою тіло внаслідок тяжіння до Землі діє на опору або підвіс, називають вагою тіла.
- •Невагомість
- •Сила тертя
- •Доцентрова сила
- •Відцентрова сила
- •Сила пружності. Закон Гука
- •§ 8. Закон збереження імпульсу
- •Тема 3 Робота і енергія
- •§ 9. Робота, енергія, потужність
- •Потужність. Одиниці потужності
- •Енергія. Закон збереження енергії.
- •Потенціальна енергія
- •Робота сили тяжіння дорівнює зміні потенціальної енергії тіла, узятій з протилежним знаком.
- •Робота сили пружності дорівнює зміні потенціальної енергії пружно деформованого тіла.
- •Закон збереження механічної енергії
- •Сума потенціальної і кінетичної енергії тіла або декількох тіл називається повною механічною енергією.
- •§ 10. Перетворення енергії і використання машин і механізмів. Коефіцієнт корисної дії
- •Розв’язок:
- •Тема 4 Динаміка обертального руху
- •§11. Рівновага тіл, які мають закріплену вісь обертання.
- •§12. Момент сили і момент інерції тіла відносно осі обертання.
- •Кінетична енергія обертального руху. Момент інерції.
- •Моменти інерції деяких тіл.
- •Теорема Штейнера.
- •§13. Основне рівняння динаміки обертального руху
- •§14. Момент імпульсу. Закон збереження моменту імпульсу
- •Розділ 2 основи молекулярної фізики і термодинаміки
- •Тема 5
- •Основні положення молекулярно-кінетичної теорії
- •§15. Дослідне підтвердження основних положень мкт Існування проміжків між частками
- •Малість розмірів часток речовини
- •Рух часток речовини
- •Дифузія
- •Взаємне притягання і відштовхування молекул
- •Швидкість руху часток і температура
- •Чим більша швидкість руху молекул тіла, тим вища його температура.
- •§16. Три стани речовини
- •§ 17. Кристалічні і аморфні тіла
- •Кристалізація аморфних тіл.
- •§ 18. Будова рідин
- •§ 19. Газоподібні тіла
- •Тема 6 Основні положення молекулярно-кінетичної теорії ідеального газу § 20. Ідеальний газ і його параметри
- •§ 21. Рівняння стану ідеального газу
- •§ 22. Газові процеси
- •§ 23. Основне рівняння мкт газів
- •§24. Температура
- •§25. Розподіл молекул за швидкостями
- •§ 26. Барометрична формула.
- •§ 27. Короткі відомості про атмосферу.
- •§ 28. Розподіл Больцмана
- •§ 29. Явища переносу
- •Середня довжина вільного пробігу і число зіткнень за секунду молекул газу.
- •Дифузія.
- •Теплопровідність
- •Внутрішнє тертя (в'язкість)
- •Тема 7 Перший закон термодинаміки
- •§ 30. Внутрішня енергія
- •§ 31. Перший закон термодинаміки Способи зміни внутрішньої енергії
- •§ 32. Теплоємність
- •§ 33. Перший закон термодинаміки для різних термодинамічних процесів
- •§ 34. Адіабатичний процес
- •Тема 8 Другий закон термодинаміки
- •§ 35. Теплові двигуни. Термодинамічні цикли. Цикл Карно
- •Двигун внутрішнього згорання
- •§ 36. Незворотність теплових процесів. Другий закон термодинаміки
- •§ 37. Статистичний зміст ентропії
- •Питання і задачі :
- •Розділ 3 електромагнетизм
- •Тема 8 Електростатика
- •§ 38. Електричний заряд. Закон Кулона
- •§ 39. Електричне поле
- •Принцип суперпозиції електричного поля.
- •§ 40. Потік вектора напруженості електричного поля. Теорема Гауса для електричного поля у вакуумі
- •Лінії напруженості електричного поля
- •§41. Робота електричного поля по переміщенню заряду. Потенціал
- •§ 42. Діелектрики і провідники в електричному полі. Поляризація діелектриків. Електроємність. Конденсатори
- •Електрична ємність
- •З'єднання конденсаторів
- •При послідовному з'єднанні конденсаторів складаються зворотні величини ємностей.
- •§43. Енергія електричного поля
- •Енергія зарядженого конденсатора дорівнює роботі зовнішніх сил, яку необхідно витратити, щоб зарядити конденсатор.
- •Тема 9 Електричний струм
- •§ 44. Сторонні сили. Електрорушійна сила. Напруга
- •§ 45. Закон Ома
- •§ 46. Послідовне і паралельне з'єднання провідників. Правила Кірхгофа
- •При послідовному з'єднанні повний опір кола дорівнює сумі опорів окремих провідників.
- •Правила Кірхгофа для розгалужених кіл
- •§ 47. Робота і потужність струму. Закону Джоуля-Ленца
- •Робота dA електричного струму I, що протікає по нерухомому провідникові з опором r, перетвориться в теплоту dQ, що виділяється в провіднику.
- •§ 48. Класична теорія електропровідності металів
- •Закон Ома
- •Закон Джоуля-Ленца.
- •Нині ведуться інтенсивні роботи по пошуку нових речовин з ще вищими значеннями Tкр.
- •Тема 10 Магнітне поле і його характеристики.
- •§49. Закон Ампера. Взаємодія паралельних струмів
- •§ 50. Закон Біо - Савара - Лапласа
- •§ 51. Теорема про циркуляцію вектора індукції магнітного поля
- •§ 52. Сила Лоренца
- •Тема 11
- •§ 53. Магнітне поле в речовині
- •Тема 12 Електромагнітна індукція
- •§ 54. Явище електромагнітної індукції. Правило Ленца
- •§ 55. Самоіндукція. Енергія магнітного поля
- •Енергія магнітного поля
- •Література
- •Тема 1
- •Національна металургійна академія України
- •49600, Г. Дніпропетровськ 5, пр. Гагаріна, 4
- •Редакційно-видавничий відділ нМетАу
Електрична ємність
Якщо двом ізольованим один від одного провідникам передати заряди q1 і q2, то між ними виникає деяка різниця потенціалів Δφ, залежна від величин зарядів і геометрії провідників. Різницю потенціалів Δφ між двома точками в електричному полі часто називають напругою і позначають буквою U. Найбільший практичний інтерес представляє випадок, коли заряди провідників однакові по модулю і протилежні за знаком. В цьому випадку можна ввести поняття електричної ємності.
Електроємністю
системи з двох провідників називається
фізична величина, яка визначається
відношенням зарядуq
одного з провідників до різниці
потенціалів
Δφ
між ними:
(3.19)
У СІ одиниця електроємності називається фарад (Ф) : .
Електроємність залежить від форми і розмірів провідників і від властивостей діелектрика, що розділяє провідники. Існують такі конфігурації провідників, при яких електричне поле виявляється зосередженим (локалізованим) лише в деякій області простору. Такі системи називаються конденсаторами, а провідники, що становлять конденсатор, називаються обкладками.
Простим
конденсатором являється система з двох
плоских пластин, розташованих паралельно
одна одній на малій в порівнянні з
розмірами пластин відстані і розділених
шаром діелектрика. Такий конденсатор
називається плоским. Електричне поле
плоского конденсатора в основному
локалізоване між пластинами (рис. 3.14);
проте, поблизу країв пластинів і в
навколишньому просторі також виникає
порівняно слабке електричне поле, яке
називають полем розсіяння. У цілому
ряду завдань можна приблизно вважати,
що електричне поле плоского конденсатора
цілком зосереджене між його обкладками
(рис. 3.15).
Рисунок 3.14. Рисунок 3.15.
Кожна із заряджених пластин плоского конденсатора створює поблизу поверхні електричне поле, модуль напруженості якого виражається співвідношенням (3.10)
.
Згідно з принципом суперпозиції, напруженість поля Е, що створюється обома пластинами, дорівнює сумі напруженостей Е+ і Е- полів кожної з пластин:
Е=Е++Е-.
Усередині
конденсатора векториЕ+
і Е-
і паралельні; тому модуль напруженості
сумарного поля рівний
. (3.20)
Поза
пластинами векториЕ+
і Е-
-
спрямовані в різні боки, і тому E
= 0.
Поверхнева густина заряду пластин
σ=q/S,
де q
- заряд, а S
- площа кожної пластини. Різниця
потенціалів між пластинами в однорідному
електричному полі Δφ=Ed,
де d
- відстань між пластинами. З цих
співвідношень можна отримати формулу
для електроємності плоского конденсатора
:
(3.21)
Таким
чином, електроємність плоского
конденсатора прямо пропорційна площі
пластин (обкладок) і обернено пропорційна
до відстані між ними. Якщо простір між
обкладками заповнений діелектриком,
електроємність конденсатора збільшується
вε
раз:
(3.22)
Прикладами конденсаторів з іншою конфігурацією обкладок можуть служити сферичний і циліндричний конденсатори. Сферичний конденсатор - це система з двох концентричних сфер радіусів R1 і R2. Циліндричний конденсатор - система з двох співісних циліндрів радіусів R1 і R2 і довжини L. Ємності цих конденсаторів, заповнених діелектриком з діелектричною проникністю ε, виражаються формулами: