
- •Вступ Що вивчає фізика
- •Фізичні величини. Вимір фізичних величин
- •Спостереження і досліди - джерела фізичних знань.
- •Будова речовини
- •Розділ 1 механіка Механічний рух. Простір і час
- •Положення тіла або точки можна задати тільки відносно іншого тіла, яке називається тілом відліку.
- •Елементи кінематики
- •§1. Система відліку. Траєкторія, шлях, переміщення
- •Кінематикою називають розділ механіки, в якому рух тіл розглядається без з'ясування причин цього руху.
- •§2. Швидкість і прискорення руху
- •Прискорення
- •Приклад розв’язку задачі.
- •Рух тіл з прискоренням вільного падіння
- •§ 3. Рух по колу
- •Приклад розв’язку задачі.
- •Динаміка поступального руху
- •§4. Перший закон Ньютона. Маса. Сила
- •Динаміка - це розділ механіки, в якому вивчаються закони руху тіл і причини, які викликають, або змінюють ці рухи.
- •Взаємодія тіл. Сила.
- •Інерція. Маса тіла
- •Густина речовини
- •Перший закон Ньютона ( закон інерції)
- •§ 5. Другий закон Ньютона
- •§ 6. Третій закон Ньютона
- •§7. Сили в механіці. Закон всесвітнього тяжіння
- •Сила тяжіння.
- •Вага тіла Силу, з якою тіло внаслідок тяжіння до Землі діє на опору або підвіс, називають вагою тіла.
- •Невагомість
- •Сила тертя
- •Доцентрова сила
- •Відцентрова сила
- •Сила пружності. Закон Гука
- •§ 8. Закон збереження імпульсу
- •Тема 3 Робота і енергія
- •§ 9. Робота, енергія, потужність
- •Потужність. Одиниці потужності
- •Енергія. Закон збереження енергії.
- •Потенціальна енергія
- •Робота сили тяжіння дорівнює зміні потенціальної енергії тіла, узятій з протилежним знаком.
- •Робота сили пружності дорівнює зміні потенціальної енергії пружно деформованого тіла.
- •Закон збереження механічної енергії
- •Сума потенціальної і кінетичної енергії тіла або декількох тіл називається повною механічною енергією.
- •§ 10. Перетворення енергії і використання машин і механізмів. Коефіцієнт корисної дії
- •Розв’язок:
- •Тема 4 Динаміка обертального руху
- •§11. Рівновага тіл, які мають закріплену вісь обертання.
- •§12. Момент сили і момент інерції тіла відносно осі обертання.
- •Кінетична енергія обертального руху. Момент інерції.
- •Моменти інерції деяких тіл.
- •Теорема Штейнера.
- •§13. Основне рівняння динаміки обертального руху
- •§14. Момент імпульсу. Закон збереження моменту імпульсу
- •Розділ 2 основи молекулярної фізики і термодинаміки
- •Тема 5
- •Основні положення молекулярно-кінетичної теорії
- •§15. Дослідне підтвердження основних положень мкт Існування проміжків між частками
- •Малість розмірів часток речовини
- •Рух часток речовини
- •Дифузія
- •Взаємне притягання і відштовхування молекул
- •Швидкість руху часток і температура
- •Чим більша швидкість руху молекул тіла, тим вища його температура.
- •§16. Три стани речовини
- •§ 17. Кристалічні і аморфні тіла
- •Кристалізація аморфних тіл.
- •§ 18. Будова рідин
- •§ 19. Газоподібні тіла
- •Тема 6 Основні положення молекулярно-кінетичної теорії ідеального газу § 20. Ідеальний газ і його параметри
- •§ 21. Рівняння стану ідеального газу
- •§ 22. Газові процеси
- •§ 23. Основне рівняння мкт газів
- •§24. Температура
- •§25. Розподіл молекул за швидкостями
- •§ 26. Барометрична формула.
- •§ 27. Короткі відомості про атмосферу.
- •§ 28. Розподіл Больцмана
- •§ 29. Явища переносу
- •Середня довжина вільного пробігу і число зіткнень за секунду молекул газу.
- •Дифузія.
- •Теплопровідність
- •Внутрішнє тертя (в'язкість)
- •Тема 7 Перший закон термодинаміки
- •§ 30. Внутрішня енергія
- •§ 31. Перший закон термодинаміки Способи зміни внутрішньої енергії
- •§ 32. Теплоємність
- •§ 33. Перший закон термодинаміки для різних термодинамічних процесів
- •§ 34. Адіабатичний процес
- •Тема 8 Другий закон термодинаміки
- •§ 35. Теплові двигуни. Термодинамічні цикли. Цикл Карно
- •Двигун внутрішнього згорання
- •§ 36. Незворотність теплових процесів. Другий закон термодинаміки
- •§ 37. Статистичний зміст ентропії
- •Питання і задачі :
- •Розділ 3 електромагнетизм
- •Тема 8 Електростатика
- •§ 38. Електричний заряд. Закон Кулона
- •§ 39. Електричне поле
- •Принцип суперпозиції електричного поля.
- •§ 40. Потік вектора напруженості електричного поля. Теорема Гауса для електричного поля у вакуумі
- •Лінії напруженості електричного поля
- •§41. Робота електричного поля по переміщенню заряду. Потенціал
- •§ 42. Діелектрики і провідники в електричному полі. Поляризація діелектриків. Електроємність. Конденсатори
- •Електрична ємність
- •З'єднання конденсаторів
- •При послідовному з'єднанні конденсаторів складаються зворотні величини ємностей.
- •§43. Енергія електричного поля
- •Енергія зарядженого конденсатора дорівнює роботі зовнішніх сил, яку необхідно витратити, щоб зарядити конденсатор.
- •Тема 9 Електричний струм
- •§ 44. Сторонні сили. Електрорушійна сила. Напруга
- •§ 45. Закон Ома
- •§ 46. Послідовне і паралельне з'єднання провідників. Правила Кірхгофа
- •При послідовному з'єднанні повний опір кола дорівнює сумі опорів окремих провідників.
- •Правила Кірхгофа для розгалужених кіл
- •§ 47. Робота і потужність струму. Закону Джоуля-Ленца
- •Робота dA електричного струму I, що протікає по нерухомому провідникові з опором r, перетвориться в теплоту dQ, що виділяється в провіднику.
- •§ 48. Класична теорія електропровідності металів
- •Закон Ома
- •Закон Джоуля-Ленца.
- •Нині ведуться інтенсивні роботи по пошуку нових речовин з ще вищими значеннями Tкр.
- •Тема 10 Магнітне поле і його характеристики.
- •§49. Закон Ампера. Взаємодія паралельних струмів
- •§ 50. Закон Біо - Савара - Лапласа
- •§ 51. Теорема про циркуляцію вектора індукції магнітного поля
- •§ 52. Сила Лоренца
- •Тема 11
- •§ 53. Магнітне поле в речовині
- •Тема 12 Електромагнітна індукція
- •§ 54. Явище електромагнітної індукції. Правило Ленца
- •§ 55. Самоіндукція. Енергія магнітного поля
- •Енергія магнітного поля
- •Література
- •Тема 1
- •Національна металургійна академія України
- •49600, Г. Дніпропетровськ 5, пр. Гагаріна, 4
- •Редакційно-видавничий відділ нМетАу
Прискорення
Рух з незмінною швидкістю відбувається досить рідко. В більшості випадків швидкість руху міняється як за величиною, так і по напряму. Зміна швидкості характеризується прискоренням.
При русі
тіла по криволінійній траєкторії його
швидкість
змінюється за величиною і напрямом.
Зміна вектора швидкості
за
деякий малий проміжок часуΔt
можна задати за допомогою вектора
(рис.1.4).
Вектор
зміни швидкості
,
можна розкласти на дві складові:
(дотичну або тангенціальну складова),
спрямовану уздовж вектора
,
і
(нормальну складову), спрямовану
перпендикулярно вектору
.
Рисунок 1.4.
Миттєвим
прискоренням (чи
просто прискоренням)
тіла називають межу відношення малої
зміни швидкості
до малого проміжку часу Δt,
впродовж якого відбувалася зміна
швидкості, або похідну від швидкості
за часом:
.
(1.4)
Таким чином, прискорення являється векторною величиною, і дорівнює першій похідній швидкості за часом. За одиницю прискорення приймають 1м/с2.
Напрям
вектора прискорення
у
разі криволінійного руху не співпадає
з напрямом вектора швидкості
,
тому при дослідженні механічного руху
можна розкласти вектор прискорення
два складових вектори: на прискорення
по дотичній до траєкторії цієї точки
(тангенціальне
)
і прискорення по головній нормалі
(нормальне прискорення
)(рис.1. 5).
Рисунок 1.5.
Дотичне (тангенціальне) прискорення вказує, як швидко змінюється швидкість тіла по модулю:
.
(1.5)
Вектор
спрямований по дотичній до траєкторії
і співпадає з напрямом вектора швидкості,
якщо рух прискорений, при уповільненому
русі вектор
і
спрямовані протилежно.
Нормальне
прискорення
вказує, як швидко швидкість тіла
змінюється по напряму. Вектор нормального
прискорення
направлений
завжди
перпендикулярно швидкості.
Криволінійний рух можна представити як рух по дугах кіл (рис. 1.6).
Вектор нормального прискорення спрямований по радіусу до центру кола. Його називають ще доцентровим прискоренням . Модуль доцентрового прискорення пов'язаний з лінійною швидкістю співвідношенням:
.
(1.6)
Рисунок 1. 6.
Таким чином, при русі матеріальної точки по криволінійній траєкторії вектор прискорення геометрично складається з прискорення тангенціального, спрямованого по дотичній до траєкторії руху і прискорення нормального, спрямованого по головній нормалі до центру кола.
.
Модуль вектора прискорення визначається по теоремі Піфагора
.
(1.7)
Приклад розв’язку задачі.
Точка рухається по осі Х згідно із законом х = 2 + 5t +2 t2, де t в секундах, а х - в метрах. Визначити координату, швидкість і прискорення цієї точки у момент часу t= 2с.
1. Для знаходження координати точки у момент часу 2 с потрібно в рівняння рух підставити цей момент часу.
Х(2) = 2 + 5·2 +2 ·22=20 м.
2. Для знаходження швидкості точки у момент часу 2с необхідно отримати рівняння швидкості (залежність швидкості руху від часу) і підставити в це рівняння момент часи 2 с.
Так,
як рух відбувається уздовж осі Х V=VX
V(t)=5+4·2=13 м/с.
3. Для знаходження прискорення точки у момент часу 2с необхідно отримати рівняння прискорення (залежність прискорення руху від часу) і підставити в це рівняння момент часи 2 с.
Так, як рух прямолінійний повне прискорення дорівнює тангенціальному прискоренню
м/с2.