
- •Вступ Що вивчає фізика
- •Фізичні величини. Вимір фізичних величин
- •Спостереження і досліди - джерела фізичних знань.
- •Будова речовини
- •Розділ 1 механіка Механічний рух. Простір і час
- •Положення тіла або точки можна задати тільки відносно іншого тіла, яке називається тілом відліку.
- •Елементи кінематики
- •§1. Система відліку. Траєкторія, шлях, переміщення
- •Кінематикою називають розділ механіки, в якому рух тіл розглядається без з'ясування причин цього руху.
- •§2. Швидкість і прискорення руху
- •Прискорення
- •Приклад розв’язку задачі.
- •Рух тіл з прискоренням вільного падіння
- •§ 3. Рух по колу
- •Приклад розв’язку задачі.
- •Динаміка поступального руху
- •§4. Перший закон Ньютона. Маса. Сила
- •Динаміка - це розділ механіки, в якому вивчаються закони руху тіл і причини, які викликають, або змінюють ці рухи.
- •Взаємодія тіл. Сила.
- •Інерція. Маса тіла
- •Густина речовини
- •Перший закон Ньютона ( закон інерції)
- •§ 5. Другий закон Ньютона
- •§ 6. Третій закон Ньютона
- •§7. Сили в механіці. Закон всесвітнього тяжіння
- •Сила тяжіння.
- •Вага тіла Силу, з якою тіло внаслідок тяжіння до Землі діє на опору або підвіс, називають вагою тіла.
- •Невагомість
- •Сила тертя
- •Доцентрова сила
- •Відцентрова сила
- •Сила пружності. Закон Гука
- •§ 8. Закон збереження імпульсу
- •Тема 3 Робота і енергія
- •§ 9. Робота, енергія, потужність
- •Потужність. Одиниці потужності
- •Енергія. Закон збереження енергії.
- •Потенціальна енергія
- •Робота сили тяжіння дорівнює зміні потенціальної енергії тіла, узятій з протилежним знаком.
- •Робота сили пружності дорівнює зміні потенціальної енергії пружно деформованого тіла.
- •Закон збереження механічної енергії
- •Сума потенціальної і кінетичної енергії тіла або декількох тіл називається повною механічною енергією.
- •§ 10. Перетворення енергії і використання машин і механізмів. Коефіцієнт корисної дії
- •Розв’язок:
- •Тема 4 Динаміка обертального руху
- •§11. Рівновага тіл, які мають закріплену вісь обертання.
- •§12. Момент сили і момент інерції тіла відносно осі обертання.
- •Кінетична енергія обертального руху. Момент інерції.
- •Моменти інерції деяких тіл.
- •Теорема Штейнера.
- •§13. Основне рівняння динаміки обертального руху
- •§14. Момент імпульсу. Закон збереження моменту імпульсу
- •Розділ 2 основи молекулярної фізики і термодинаміки
- •Тема 5
- •Основні положення молекулярно-кінетичної теорії
- •§15. Дослідне підтвердження основних положень мкт Існування проміжків між частками
- •Малість розмірів часток речовини
- •Рух часток речовини
- •Дифузія
- •Взаємне притягання і відштовхування молекул
- •Швидкість руху часток і температура
- •Чим більша швидкість руху молекул тіла, тим вища його температура.
- •§16. Три стани речовини
- •§ 17. Кристалічні і аморфні тіла
- •Кристалізація аморфних тіл.
- •§ 18. Будова рідин
- •§ 19. Газоподібні тіла
- •Тема 6 Основні положення молекулярно-кінетичної теорії ідеального газу § 20. Ідеальний газ і його параметри
- •§ 21. Рівняння стану ідеального газу
- •§ 22. Газові процеси
- •§ 23. Основне рівняння мкт газів
- •§24. Температура
- •§25. Розподіл молекул за швидкостями
- •§ 26. Барометрична формула.
- •§ 27. Короткі відомості про атмосферу.
- •§ 28. Розподіл Больцмана
- •§ 29. Явища переносу
- •Середня довжина вільного пробігу і число зіткнень за секунду молекул газу.
- •Дифузія.
- •Теплопровідність
- •Внутрішнє тертя (в'язкість)
- •Тема 7 Перший закон термодинаміки
- •§ 30. Внутрішня енергія
- •§ 31. Перший закон термодинаміки Способи зміни внутрішньої енергії
- •§ 32. Теплоємність
- •§ 33. Перший закон термодинаміки для різних термодинамічних процесів
- •§ 34. Адіабатичний процес
- •Тема 8 Другий закон термодинаміки
- •§ 35. Теплові двигуни. Термодинамічні цикли. Цикл Карно
- •Двигун внутрішнього згорання
- •§ 36. Незворотність теплових процесів. Другий закон термодинаміки
- •§ 37. Статистичний зміст ентропії
- •Питання і задачі :
- •Розділ 3 електромагнетизм
- •Тема 8 Електростатика
- •§ 38. Електричний заряд. Закон Кулона
- •§ 39. Електричне поле
- •Принцип суперпозиції електричного поля.
- •§ 40. Потік вектора напруженості електричного поля. Теорема Гауса для електричного поля у вакуумі
- •Лінії напруженості електричного поля
- •§41. Робота електричного поля по переміщенню заряду. Потенціал
- •§ 42. Діелектрики і провідники в електричному полі. Поляризація діелектриків. Електроємність. Конденсатори
- •Електрична ємність
- •З'єднання конденсаторів
- •При послідовному з'єднанні конденсаторів складаються зворотні величини ємностей.
- •§43. Енергія електричного поля
- •Енергія зарядженого конденсатора дорівнює роботі зовнішніх сил, яку необхідно витратити, щоб зарядити конденсатор.
- •Тема 9 Електричний струм
- •§ 44. Сторонні сили. Електрорушійна сила. Напруга
- •§ 45. Закон Ома
- •§ 46. Послідовне і паралельне з'єднання провідників. Правила Кірхгофа
- •При послідовному з'єднанні повний опір кола дорівнює сумі опорів окремих провідників.
- •Правила Кірхгофа для розгалужених кіл
- •§ 47. Робота і потужність струму. Закону Джоуля-Ленца
- •Робота dA електричного струму I, що протікає по нерухомому провідникові з опором r, перетвориться в теплоту dQ, що виділяється в провіднику.
- •§ 48. Класична теорія електропровідності металів
- •Закон Ома
- •Закон Джоуля-Ленца.
- •Нині ведуться інтенсивні роботи по пошуку нових речовин з ще вищими значеннями Tкр.
- •Тема 10 Магнітне поле і його характеристики.
- •§49. Закон Ампера. Взаємодія паралельних струмів
- •§ 50. Закон Біо - Савара - Лапласа
- •§ 51. Теорема про циркуляцію вектора індукції магнітного поля
- •§ 52. Сила Лоренца
- •Тема 11
- •§ 53. Магнітне поле в речовині
- •Тема 12 Електромагнітна індукція
- •§ 54. Явище електромагнітної індукції. Правило Ленца
- •§ 55. Самоіндукція. Енергія магнітного поля
- •Енергія магнітного поля
- •Література
- •Тема 1
- •Національна металургійна академія України
- •49600, Г. Дніпропетровськ 5, пр. Гагаріна, 4
- •Редакційно-видавничий відділ нМетАу
Потужність. Одиниці потужності
На практиці має значення не лише величина виконаної роботи, але і час, протягом якого вона здійснюється. Одну і ту ж роботу різні механізми виконують за різний час. Швидкість виконання роботи у фізиці характеризують фізичною величиною, яка називається потужність.
Потужність дорівнює відношенню роботи до часу, за який вона була здійснена.
Якщо за однакові, скільки завгодно малі проміжки часу здійснюється не однакова робота, потужність буде змінна з часом. В цьому випадку вводиться в розгляд значення миттєвої потужності :
(1.28)
Якщо за час dt точка прикладення сили переміщається на dS, тоді елементарна робота dА, що здійснюється за час dt буде рівна:
dА=FdS,
а потужність можна представити у виді:
.
(1.29)
За одиницю потужності приймають таку потужність, при якій за 1 с здійснюється робота 1 Дж. Цю одиницю називають ват (Вт), на честь англійського ученого Уатта (1736-1819) - винахідника парової машини. 1Вт = 1Дж/с.
Енергія. Закон збереження енергії.
Енергію, яку має рухоме тіло, називають кінетичною енергією.
Кінетична енергія тіла вимірюється роботою, яку тіло може виконати завдяки інерції при загальмовуванні тіла до зупинки.
Сила інерції рухомого тіла при гальмуванні, виконує роботу, що йде на подолання опору руху. Сила інерції діє по напряму руху (cos α=1) і чисельно рівна:
. Впродовж нескінченно малого проміжку часу робота сили рівна
.
В
результаті перетворення отримаємо:
.
Кінетична енергія тіла, що рухається із швидкістю v, є сумою робіт, виконаних силою інерції при загальмовуванні тіла до повної зупинки.
.
(1.30)
Вода, що рухається, приводячи в обертання турбіни гідроелектростанції, витрачає свою кінетичну енергію і здійснює роботу. Усяке тіло, що рухається, має кінетичну енергію. Кінетична енергія залежить від маси тіла і його швидкості.
Робота усіх прикладених сил дорівнює роботі рівнодійної сили (див. рис. 1.19).
Між зміною швидкості тіла і роботою, здійсненою прикладеними до тіла силами, існує зв'язок. Цей зв'язок найпростіше встановити, розглядаючи рух тіла уздовж прямої лінії під дією постійної сили. В цьому випадку вектори сили, переміщення, швидкості і прискорення спрямовані уздовж однієї прямої, і тіло здійснює прямолінійний рівноприскорений рух. Направивши координатну вісь уздовж прямої руху, можна розглядати F, s, v і a як величини (позитивні або негативні залежно від напряму відповідного вектора. Тоді роботу сили можна записати як
A=F·S .
При рівноприскореному
русі переміщення s виражається формулою
.
Звідси витікає, що ·
Робота прикладеної до тіла рівнодійної сили дорівнює зміні його кінетичної енергії.
A=Ek2 - Еk1 . (1.31)
Це твердження називають теоремою про кінетичну енергію. Теорема про кінетичну енергію справедлива і в загальному випадку, коли тіло рухається під дією сили, що змінюється, напрям якої не співпадає з напрямом переміщення.