Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект ОЕАЦТ.doc
Скачиваний:
78
Добавлен:
10.02.2016
Размер:
2.93 Mб
Скачать

7.6 Ємнісні властивості p-n-переходу

Процеси накопичення, розосередження, генерації та регенерації, які відбуваються безпосередньо в переході та за його межами, спричиняють інерційність електричних перетворень. Дійсно, якщо на ЕДП подати сходинку напруги або струму, то перехідні процеси перебігають так, як в електричних колах з конденсаторами. Особливості електричних процесів у p-n-переході дозволяють виділити дві складові повної ємності Cj бар'єрну та дифузійну.

Бар'єрна ємність. У запірному шарі ЕДП по обидва боки від металургійної межі виникають однакові за значенням, але протилежні за знаком об'ємні заряди іонів домішок. Залежно від прикладеної напруги змінюється товщина цього шару d (рис. 7.6, 7.7) і, як наслідок, значення зарядів. Тобто маємо систему, аналогічну зарядженому конденсатору з діелектриком, функцію якого виконує збіднений шар. Ємність, створену цими процесами, називають бар'єрною. Вона збігається з ємністю плоского конденсатора, відстань між обкладинками якого дорівнює товщині запірного шару d. Вплив цієї ємності переважно виявляється під час зворотного вмикання p-n-переходу. Зі збільшенням модуля зворотної напруги d збільшується, бар'єрна ємність — зменшується. Підвищення концентрації домішок збільшує ємність, оскільки відстань між обкладинками зменшується.

Залежність ємності від напруги називають вольт-фарадною характеристикою. Властивість p-n-переходу змінювати ємність шляхом зміни напруги використовують для побудови особливого типу напівпровідникових діодів - варикапів.

Дифузійна ємність. При прямій напрузі виявляються дві фізичні причини, які зумовлюють ємність p-n-переходу. Перша з них полягає у змінюванні зарядів у збідненому шарі, що враховується за допомогою бар'єрної ємності, друга - у змінюванні концентрації носіїв у нейтральних зонах поблизу межі переходу і значення заряду, накопиченого цими носіями внаслідок інжекції. Цей процес відтворюється за допомогою дифузійної ємності. Така назва вказує на те, що заряди неосновних носіїв змінюються в результаті дифузії.

Дифузійна ємність експоненціальне зростає зі збільшенням прямої напруги і при досить великих прямих напругах (для кремнію 0,4...0,5В дифузійна ємність Сдиф значно перевищує бар'єрну С6ар. При малих напругах, коли значно наростає струм рекомбінації, дифузійна ємність стає меншою від бар'єрної і нею нехтують. Отже, повна ємність р-п-переходу становить суму двох складових:

, (7.24)

причому Сбар впливає у разі зворотного вмикання, а Сдиф - прямого.

Наявність цих ємностей та їхні значення враховуються при створенні напівпровідникових приладів, призначених для роботи у високочастотних та швидкодіючих радіоелектронних пристроях, коли тривалість процесів накопичення - розосередження є сумірною з періодом зміни інформаційних сигналів або з їх тривалістю.

7.7 Пробій р-п-переходу

Пробій р-п-переходу - це явище різкого збільшення диференціальної провідності p-n-переходу у разі досягнення зворотною напругою (струмом) критичного для даного приладу значення. Існують три основні види (механізми) пробою: тунельний, лавинний і тепловий. Тунельний та лавинний відносять до електричних пробоїв, які спричинюються лавинним розмножуванням носіїв заряду чи тунельним ефектом під дією прикладеної напруги.

Тунельний пробій обумовлюється тунельним ефектом - переходом електронів крізь потенціальний (енергетичний) бар'єр без зміни енергії. Тунельний ефект виявляється тільки за дуже малої товщини переходу (близько 10 нм), тобто в переходах між сильнолегованими р- і п-ділянками (якщо N>1018 см-3). Умови для тунелювання виникають тільки при повній напруженості електричного поля, значення якої складає приблизно 8·105В/см для кремнієвих переходів та 3·105 В/см для германієвих. Оскільки вірогідність тунелювання значною мірою залежить від напруженості електричного поля, то зовні тунельний ефект виявляється як пробій p-n-переходу. Напруга тунельного пробою не перевищує декількох вольтів. З підвищенням температури ширина забороненої зони трохи зменшується. Отже, температурний коефіцієнт напруги тунельного пробою є негативним.

Лавинний пробій пов'язаний з утворенням лавини носіїв зарядів під дією сильного електричного поля, в якому носії на довжині вільного пробігу набувають енергії, достатньої для утворення нових електронно-діркових пар ударною іонізацією атомів напівпровідника. Пробій виникає при UR =Uпроб, коли відбувається безперервне зростання струму. Чим меншою є концентрація домішок і чим більшою ширина забороненої зони, тим більшою буде напруга пробою.

З підвищенням температури напруга лавинного пробою збільшується, що пояснюється зменшенням довжини вільного пробігу носіїв. За таких умов потрібна більша напруженість електричного поля для того, щоб носії набули енергії, необхідної для ударної іонізації. У такому разі температурний коефіцієнт напруги лавинного пробою є позитивним.

Якщо концентрації домішок невисокі (менше 1018 см-3), напруга лавинного пробою буде меншою, ніж тунельного, тобто матиме місце лавинний пробій. Якщо концентрації домішок високі (понад 1019 см-3), напруга лавинного пробою буде вищою за напругу тунельного і відбудеться тунельний пробій. Для проміжних значень концентрацій домішок пробій обумовлюється двома механізмами. На практиці механізм пробою визначають за знаком температурного коефіцієнта напруги пробою. Експерименти показують, що крутість ВАХ лавинного пробою вища, ніж ВАХ тунельного.

Тепловий пробій спричинюється нагріванням p-n-переходу за рахунок виділення теплоти при проходженні зворотного струму. Такий пробій відбувається внаслідок зростання носіїв заряду через порушення рівноваги між кількістю тепла, що виділяється в р-п-переході, та кількістю тепла, що відводиться від нього. На переході виділяється потужність розсіювання (IR UR), яка спричинює підвищення температури ЕДП і прилеглих до нього ділянок напівпровідника. Унаслідок цього збільшується концентрація неосновних носіїв і тепловий струм, що знову таки призводить до подальшого зростання потужності розсіювання та температури.

Якщо кількість виділеної в переході теплоти перевищує кількість відведеної теплоти, то при напрузі пробою (коли якраз і створюються такі умови) починає розвиватися процес безперервного наростання температури, а отже, і струму. У такому разі напруга теплового пробою залежить від умов тепловідведення: з підвищенням температури навколишнього середовища вона зменшується.

Напруга теплового пробою тим нижча, чим більший тепловий зворотний струм I0. У p-n-переходах з великим значенням I0, зокрема в германієвих, навіть при кімнатній температурі тепловий пробій може настати раніше, ніж лавинний.

У кремнієвих ЕДП зворотні струми значно менші і напруга теплового пробою настільки велика, що раніше настає лавинний пробій. Проте при високій температурі навколишнього середовища тепловий пробій виникає і в кремнієвих р-n-переходах. Пробій може початись як лавинний, а потім зі збільшенням зворотного струму перейти в тепловий. Після усунення електричних пробоїв p-n-перехід відновлює свої властивості. У деяких напівпровідникових приладах це явище використовують для корисних перетворень електричних сигналів (наприклад, у стабілітронах).

Тепловий пробій завжди призводить до руйнування електричного переходу. Під час проектування та експлуатації електричних переходів створюють схемотехнічні та конструктивні умови, щоб запобігти тепловим пробоям.